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1. Introduction 

Brittle structural materials contain randomly spaced and oriented cracks 
with statistically distributed sizes throughout their bulk. When such ma­
terials are used in structural applications, the applied loads may induce 
stresses under whose influence the cracks will propagate. 

It has been shown by several investigators [1-3] that the probability 
of finding larger cracks increases with the volume of the material and the 
chance that such cracks produce incipient failure also increases with large 
stresses. The statistical distribution that best describes the behaviour of 
such brittle structural components is the Weibull probability function [4]. 

The analysis leads, for simple structural components, to design equa­
tions analogous to those used for deterministic analysis with the advan­
tage that the designer can pre-set the probability of failure at a desired 
low level. For more complicated structures a finite element stress analysis 
must be performed in a conventional manner, after which probability cal­
culations may be performed with stored stress values and corresponding 
element sizes in addition to material properties as the required input. 

The probabilistic analysis shows that various components may be de­
signed with different safety factors, depending on their size and stress dis­
tribution, and still maintaining the same level of safety. 

2.Chain Rule, Weakest Link Hypothesis 

For a chain to survive, all links must survive 'Chain Rule'. If the reliabil­
ity of the links is L 1, L2, ... , Lm, the reliability of the Chain is, 

1 Based on the author's lecture given in the frame of the program 'Guest Professors 
at the Department of Technical Mechanics, Finno-Ugrian term, Spring 1992.' 
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Fig. 1. The chain analogy 

L = L1 X L2 X L3 X .•. X Ln. 

2.1. Weibull Statistics 

The probability that a unit volume (Fig. 2) of material survives under the 
application of a stress, S, is given as 

Fig. 2. Reliability of a unit volume 

(1) 

where L(s) is the probability, Rc is the 'characteristic' ultimate strength of 
the unit or reference volume and, m is the Weibull shape parameter. These 
two constants define the two-parameter Weibull distribution (Fig. 3). The 
'characteristic strength' has a probability of survival of L(Rc) = e- J = 
0.37. Some authors utilize the mean [lJ or the median [3J strength in 
their derivations. Because the mean value is not associated with a specific 
probability level, it is not used here and for the sake of simplicity the 
'characteristic value' will be utilized. 

If the survival of the structural component requires that all volume 
elements survive and the elements are independent of each other, the reli-
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Fig. 3. Two-parameter Weibull distributions 

Fig. 4. Reliability of a series of unit volumes 
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ability of the component is equal to the product of the individual reliabil­
ities of volume elements (weakest link hypothesis), as seen in Fig. 4. 

S m 5 m (E.H..)m v. _(.::.1.).v _(.::.1.) ·v? - R· n ( L(Component) = e Rc 1 • e Rc - ••. e <c 2) 

or using the common base, e 

-t(-,~~r 
L(Component) = e ;=1 • Vi. (3) 

For small volume elements the summation is replaced by integration (Fig. 5) 

(4) 

where the risk of failure, A, the exponent of e, is called the stress-volume 
integral. If Smax is the maximum value of the applied stress through the 
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p 

Fig. 5. Reliability of a continuum 

component and V is its total volume, Eq. (4) may be written in terms of 
dimensionless ratios as 

llnl/L =). = (Smax). V J (~)m. dv. 
Rc v Smax V 

(5) 
v 

In Eq. (5), Rc is the strength (characteristic value) of a unit or reference 
volume, v, of the material. The ratio 

Rc 
--=Vc 
Smax 

(6) 

is a safety factor referred to the characteristic strength of the reference 
volume and is called the central safety factor. The dimensionless variable 
S / Smax is independent of the volume for an elastic analysis; that is geo­
metrically similar structures will have the same stress-volume integrals for 
any volume. 

Substituting Eq. (6) into Eq. (5), two forms of the relation result 

lnl/L = (~)m (V) J (~)m. dv, 
Vc V Smax V 

(7) 
v 

v, = { In~/L . : ! (S~J"'· ~ rm (8) 

Eq. (7) states that for a specified central safety factor, stress distribu­
tion and volume, the probability of survival or the probability of failure 
Pf = 1 - L may be calculated. 

According to Eq. (8), for a specified safety level, L, the required cen­
tral safety factor, Vc, is calculated. 
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3. Design Examples 

3.1 Axial Tension or Compression 

If a uniaxial force, P, is applied to a bar with a cross-sectional area A, 
(Fig. 6), the stress in the bar is uniform 

Fig. 6. Reliability of a bar subjected to tension 

P 
5 = - = constant = Smax 

A 
hence, 

---1 -- ·--1 5 J ( 5 )m dv 
Smax -, Smax V -

and substituting Vc = Rc(P/A) into Eg. 8, 

!.n1/L = 

The probability of a failure is 

(
V

1c)m !. ·A 
1 

_(..L)m''''D:'.f _(p/A)m''''D2.( -:4,-
Pj = 1 - L = 1 - e "c j' = 1 - e Rc 4 = 1 - e vc. (9) 

Eg. (9) can be used to illustrate size effect. It two different volumes VI and 
V2 have the same reliabilities 

then 
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therefore 

(10) 

If, for example, V2/Vl = 100 and m = 12, SI, the strength of the smaller 
volume is 1.468 times greater than that of the larger one. Under uniaxial 
compression both the applied stress and the compressive strength of a 
reference volume are negative (usually numerically greater than the tensile 
strength) and the same relations apply. 

3.2 Rectangular Cantilever Beam with Uniform Load 

The bending moment in the beam (Fig. 7) is a function of x: 

Fig, 7. Uniformly loaded cantilever beam 

2 
w'x 

M(x) = --2-' 

The corresponding stress is given in terms of the moment of inertia I = 
bd3/12 as 

w 'x2 d/2 
S(x,y) = ±-2-' b, d3/12' 

The maximum stress occurs at the fixed end on the surface where x = .e 
and y = d/2 

Hence 

w·.e2 d/2 
Smax = ±-2-' b, d3 /12' 

2X2. y 
S/Smax = (2:d"' 

As the lower half of the beam is in compression, Eq, (7) will consist of two 
parts 

.en1/L = ( 1 ) m V [1 ( S ) m dv 1 ( S ) m dv 1 
Vc -:;; V

T 
Smax ' V + Vc H ' Smax 'v' (11) 
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where the factor H is the negative ratio of the compressive strength and 
the tensile strength 

H=_Rcc. 
Ret 

(12) 

For the beam 

in~ = (~)m i· b· d [J
d

/

2

JI. (2X
2

• y) m b· dx· dy + 
L Vc 1 i2 . db· d . i 

o 0 

+ J J (i~:;"dr :d~d~l· 
-d/2 0 

Performation of the indicated integrations results in 

(l)m i.b.d [( 1 )m] 
in1/L= Vc 2(2m+1)(m+1) 1+ H . (13) 

Comparing the maximum stress capability of a cantilever beam with that 
of a tension component of identical volume at the same level of reliability, 
neglecting the HIm term, we obtain 

V 1 V 
= vB 2(2m + l)(m + 1) 

or 
SBmax = ST[2(2m + l)(m + l)]I/m. 

Using again m = 12, 

S Bmax = 1. 72ST· 
The strength of the beam is greater than that of the tension component 
because in the beam only a small volume at the fixed end near the top 
and bottom is highly stressed while the tension specimen carries the same 
stress throughout its complete volume. 

The example indicates the effects of stress concentrations and stress 
gradients. 

3.3. Thick Walled Cylinder Under Internal Pressure 

(14) 

----.-------- ---------------------- --- ---------- - -------------



142 R. A. HELLER 

In the case of a multi-axial stress state the theory of independent action 
[2] is utilized. The theorem states that a volume element fails when one 
of stress components acting normally to an incipient crack exceeds the 
strength of the material in that direction (Fig. 8). Hence, Eq. (2) is mod­
ified as 

Fig. 8. Failure under a multi-dimensional state of stress 

_.:l .6.\7 _....l. ·6.F - ~ ·6.F (s )m (s )m ()m 
L(.6.V)=e R j ·e R2 .e R3 , 

L(Component) = L(.6.VI)· L(.6.V2)· ... L(.6.Vn ) (15) 

and hence 

_ f [(~)m +(~)m +(53)m]6.\~ 
L(Component) = e ;:1 R

j 
R2 R3 (16) 

The risk function, the exponent of Eq. 15, is again the stress-volume integral 

where RI, R2 and R3are the strength components of the reference volume 
in the directions of the principal stresses 51, 52 and 53. If the material is 
homogeneous and isotropic, RI = R2 = R3 = Rc. 

A = (15maxl )771. V [J (~)771. dv + 
Re V 15max l V 

J ( 52 )771 dv J ( 53 )771 dV] 
+ 15max l ·11+ 15max l . V ' (18) 

where 15max ll Rc = liVe. 
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Fig. 9. Thick walled cylinder under internal pressure 

For a cylinder with TO = 6 cm, Ti = 4 cm and .e = 100 cm (Fig. 9) and 
m = 7, IV

r 
= 3.79139.10- 11

, Ive = 2.13794'10-1, Iv, = 4.27794.10-7
, 

V = 7r' (T5 - TT) . .e = 6283· cm3
, and v= 1 cm3

, hence 

). = (:J 7 . 6283· [3.79139.10- 11 + 2.13794,10-1 + 4.27794.10-7
] 

= 1.343.103
. (:J 7 

It can be seen that only the tangential stress has a significant effect on the 
reliability of the cylinder. For a factor of safety lie = 5 the reliability of the 
cylinder is L = 0.983. 

3.4 Axially Loaded Notched Bar 

The axially loaded notched bar (Fig. 10) is analyzed with the aid of 
a finite element program that calculates the maximum principal stresses at 
nine integration points (Fig. 11) in each element. The stresses and the cor­
responding surface areas are recorded. Once this has been accomplished, 
the largest maximum principal stress, Smax, in the plate is searched out; 
each stress is divided by Smax, the ratio is raised to the mth power and is 
multiplied by the corresponding area and the plate thickness b. The term 
is then divided by the total volume and is summed up over all integration 
points to result in the finite element version of the stress volume integral 
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b 

b=12mm 

d=40mm 

e=28mm 

r = 15mm 

l = 160mm 

a =30mm 

Fig. 10. Axially loaded notched bar 

i th element "-----'--"'-_...J 

Fig. 11. Finite element notation 

J (~)m. dv _ tt (~)m. Aij ·b 
v Smax V - j=l i-=l Smax V' 

(19) 
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The other principal stress will not contribute to the stress-volume integral 
and is hence neglected. 

This summation is substituted into Eq. (7) for the risk function 

>. = in1/ L = (~) . V . t t ( Sij )m . Aij . b, 
Vc v j=l i=l Smax V 

( l)m 9 ( S .. )m in1/ Lij = - . L _IJ_ . Aijb, 
Vc i=l Smax 

j = 1,2, ... , n, (20) 

n 

L = IT Lj 
j=l 

o.'iJffo 

Fig. 12. Reliabilities of finite elements in a notched bar 

A quarter of the plate, shown in Fig. 12, was analyzed and the reliabilities 
of the elements were calculated. The total reliability of the plate is then 
computed as 

L1/ 4 = 0.95, Lplate = (Ll/4) 4 = 0.814. 
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4. Orthotropic Materials 

4.1 Analysis of Orthotropic Materials 

When the strength of the material varies with orientation, the orthotropic 
properties can be described by a strength ellipsoid where principal axes 
coincide with the material axes [2]. The directions of the three principal 
stress axes do not usually coincide with the material axes. Under such con­
ditions it becomes necessary to perform a transformation of the strength in 
order to calculate three strength values in the directions of the three prin­
cipal stresses (Fig. 12). 

For an orientation defined by the direction cosines (11,12,13) of the 
principal stress SI 

(21) 

where R~l), R~2), RP) are the principal strengths along the material axes. 
Hence the 'Stress-Volume-Integral' of an anisotropic material is written as 

In the case of a laminated composite material the three dimensional ellip­
soid reverts to a strength ellipse. 

Experiments conducted on a quasi-isotropic graphite epoxy laminate 
indicate such a directional variation of strength. The table shows such 
measurements [1]. 

The Weibull modulus is independent of direction within the mate­
rial and for the particular material considered is approximately equal to 
m = 26 for all angles e. The unit volume strengths depend on orientation 
and their'magnitudes change by about 25 percent over the range e = 0° to 
() = 90°. The best fit curve describing the variation of Rc with e is an el­
lipse. An elliptic equation, with semi-major axes given by Rc(OO) = 30.085 
and Rc(900) = 23.598, (Fig. 13) 

[ 

2 2 ]-1/2 cos e sin e 
Rc(O deg)2 + Rc(90 deg)2 

(23) 

predicts strengths differing from the experimental values by 6 percent at 
the most (see Fig. 14). Generalizing these results confirms the transforma­
tion law postulated by Eq. (23). 
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Table 1 
Weibull Moduli and Unit Volume Strengths for the Anisotropic Tests(l) 

Weibull 
Modulus Rc(O)Exp Rc(O)Th 

00 m N/mm2 /em 3 N/mm2 /em3 

0 25.0 30.08 30.08 
10 25.7 30.80 29.80 
20 22.1 29.4.5 29.04 

30 24.9 29.32 27.97 

40 27.3 28.30 26.81 
50 26.3 26.60 26.73 
60 22.2 24.72 24.82 
70 23.0 23.78 24.14 

80 28.1 23.98 23 .. 5.5 

90 26.5 23.59 23 .. 59 

Fig. 13. Strength ellipsoid 

4.2 Finite Element Formulation 

Eq. 22 cannot usually be integrated in closed form and the point-by-point 
stress analysis may also be difficult to perform analytically. When a finite 
element stress analysis is used, the three principal stresses and their direc­
tions must be calculated and the volume of corresponding elements must 
be available. Three characteristic strength vectors in tension and compres­
sion are to be calculated in the directions of the principal stresses for each 
element (or for each integration point). The integrations of Eq. (22) are 
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Fig. 14. Variation of reference volume strength with angle of anisotropy 

then replaced by summations 

(24) 

The reliability of the structure consisting of n elements is the product of 
the reliabilities of elements and the risk of failure, A, is the sum of the risks. 

and 
n 

L = IT Lj = e-
A 

j=l 

5. The Three-Parameter Weibull Distribution 

(25) 

(25) 

It has been indicated in Eq. (10) that the strength of a smaller volume is 
greater than that of a larger one. That relationship also implies that the 
strength of a very large volume of material would be practically zero. Such 
a conclusion is unrealistic. This difficulty can be overcome with the intro­
duction of a third parameter, Ro, the minimum strength, into the Weibull 
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distribution. In contrast to Eq. (1), the three-parameter distribution is 
written as 

(~)mv L = e - Rc-Ro (26) 

When Eq: (26) is used instead of Eq.( 7), the relationship 

A=ln1/L= ( 1 )mv J (~_~)mdV (27) 
vc (1 - l/vmax) v Smax Vmax v 

S>Ro 

results, where Vmax = ~~. Eq. (27) recognizes that most materials possess 
a minimum strength. When stresses below this level are applied no failure 
can occur. Integration in this case is carried out only for that portion of 
the volume for which the applied stress exceeds the minimum strength, Ro. 

Accordingly, Eq. (10) is modified as 

~ = [(1- Ro) (~) ~ + Ro] , 
Rc Rc V Rc 

(28) 

where Rc is the characteristic strength of the reference volume, v, and Ro 
is the minimum strength. 

If for a typical material ~~ = 0.6 and m = 12, a volume 100 times 
larger than the reference volume will have a strength of 0.87 Rc. Eq. (10) 
would predict 0.68 Rc. 

Even for a very large volume the strength would only drop to the Ro 
value. 

The three-parameter version, Eq. (27) can be used to replace any of 
the relevant relations in the foregoing examples. 

6. Experimental Verification of Size Effects 

It is evident from Eq. (28) that in order to demonstrate size effects experi­
mentally, large volume ratios are required. Small laboratory specimens can 
be tested in statistically significant quantities but full size structural com­
ponents are too expensive and cannot be replicated in sufficient numbers. 

To circumvent this problem, size effects can be demonstrated by re­
lying on specimens containing severe stress gradients as demonstrated in 
Section 3.2. 

Consequently, notched specimens have been prepared as shown in 
Fig. 15. In these specimens stresses are high in a small volume at the tip of 
the notch. Results of four-point bending tests on such notched specimens 
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Fig. 15. Smooth and notched beams loaded in four-point bending 
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Fig. 16. Comparison of smooth and notched beam reliabilities as functions of load 

are compared with smooth beams (large volume) of the same size. In this 
manner, volume ratios of the order of 1000 may be achieved. 
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Fig. 17. Comparison of smooth and notched beam reliabili ties as functions of fail ure stress 

Both types of beams are subjected to a finite element stress analysis, 
failure loads are measured in a testing machine as well as experimental and 
analytica~ loads are compared. If the calculated loads agree with the exper­
imentally obtained ones, the analytical stresses are assumed to be correct. 

Small beams of a composite material as shown in Fig. 15 have been 
machined and tested. Calculated failure loads and maximum stresses ver­
sus reliability are presented in Figs. 16 and 17. It can be seen that at a 
50% reliability value the load carrying capacity of the notched beams is 
about half of that of smo9}lt beams, a result that agrees with experiments. 
On the other .. \land, the~aximum stress at failure in notched beams is 
1.8 times great~r than the'strength of unnotched beams, a clear indication 
of size effect. 
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7. Conclusions 

The strength reduction in large components as compared to laboratory size 
specimens has been demonstrated based on the 'Weakest Link' hypothe­
sis and the Weibull distribution. Calculations of such size effects for vari­
ous simple structural components have been carried out in closed form and 
with the aid of Finite Element Analysis for more complicated structures. 

Experiments performed on notched and unnotched composite beams 
have been used to verify the results. 
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