
PERIODICA POLYTECHNICA SER. MECH. ENG. VOL. 36, NO. 2, PP. 153-161 (1992) 

MATHEMATICAL MODELLING OF 
NERVE PULSE TRANSMISSION 

J. ENGELBRECHT1 

Institute of Cybernetics 
Estonian Academy of Sciences 

Received: October 20, 1992 

Abstract 

In this expository paper some key problems of nerve pulse dynamics are briefly analysed. 
Instead of the traditional parabolic models, the evolution equation modelling the prop­
agation of a single nerve pulse is used. Such an approach together with the formalism 
of inner variables permits to bridge the various branches of wave dynamics, especially to 
distinguish between dissipative and soli tonic structures. 
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l.Introduction 

The pulse transmission in nerve fibres is a fascinating physical phenomenon 
that has already attracted researchers' attention for a long time. Isaac 
Newton has put the question about' ... vibrations of this medium, excited 
in the brain ... ' (see [1], p. 487), being fairly close to the electrodynamics. 
Contemporary theory of nerve pulse transmission is based on the famous 
results of HODGKIN and HUXLEY [2] who have explained the role of the 
ion currents responsible for the stable wave-profile. There are still many 
questions to be answered and the research in this field is developing fast 
bearing also in mind the artificial neural networks. 

The main structural feature in nerve pulse dynamics in a stable soli­
tary pulse of a characteristical asymmetric profile (Fig. la). Solitary waves 
as carriers of energy are well understood in conservative media [3J. Here 
the situation is different - the medium is highly dissipative but the source 
terms balance the energy outflux resulting in a solitary wave. The physical 
background is the following (see also Fig. lb). The nerve pulse (voltage) is 
transmitted down the axoplasm core of a nerve which is surrounded by a 
cylindrical membrane. The relative concentration of ions (mainly sodium 

1 Based on the author's lecture given in the frame of 'Guest Professors at the 
Dept. of Technical Mechanics, Finno-Ugrian term, Spring 1992.' 
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and potassium) create the transmembrane potential. If an electric stimulus 
is applied to the nerve then the membrane acts in different ways depending 
on the value of the stimulus. If the stimulus is below a certain threshold 
value, then the depolarisation process of the membrane is reversible and 
the equilibrium state returns fast without any pulse propagating. If, how­
ever, the stimulus is above this threshold, the inward flow of the sodium 
ions starts. This process is followed then by an increase in the potassium 
permeability which causes an outward flow of the potassium ions. Later 
due to the balance of inward and outward flows the process returns to the 
equilibrium again but through an undershoot. This all results in an asym­
metric solitary wave shown in Fig. 1 and propagating without changes in 
its profile, i.e. representing a constant profile solution. 
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Fig. 1. A schematical nerve pulse: (a) a typical profile; (b) idealised nerve with lOn 
currents. Dashed lines - values of resting potentials 

In solid mechanics, the wave processes are fairly well understood [4] and 
the main point in wave dynamics is the concept of finite velocities - ev­
ery excitation propagates with a finite velocity determined mainly by the 
properties of the medium. This physical understanding is reflected in the 
hyperbolicity of the governing equations in wave dynamics. The real physi­
cal model,s, however, are sometimes so complicated that waves are not nec­
essarily governed by strictly hyperbolic equations since various asymptotic 
methods have been used for deriving the governing equations from con­
servation laws. Nevertheless, every mathematical model should be traced 
back to initial hyperbolic equations as complicated as they could be and 
every wave motion should be related to finite velocities. 
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Now the interesting paradox appears - the classical theory of nerve 
pulse transmission [1,2] is based on the parabolic equations which strictly 
speaking lead to infinite velocities. However, the situation is more com­
plicated while the governing equations consist of a nonlinear source term 
responsible for modelling ion current. It is shown then that in this case, 
the governing equations have a progressive type solution for which the fi­
nite velocity exists [1,5]. In this way the paradox is seemingly solved but 
only theoretically. The constant profile solution corresponds to a separa­
trix in the phase portrait and, in order to follow it, a physically abnormal 
accuracy of calculations is needed. In other words, this accuracy is needed 
for determining the wave velocity that should be given according to COLE 
[5] with an accuracy of 10- 18 . Even in this case, some special methods 
are needed in order to calculate a full profile [6]. This situation leads back 
to inspecting the governing equations in order to estimate the validities of 
basic assumptions and to find other possibilities to represent the main fea­
tures of the process. Such an approach is also quite logical in the general 
sense because once a certain theory is settled, it is used widely without 
questioning until some of its shortcomings become vital. Then, taking into 
account the progress in physical understandings, mathematical methods, 
etc., the next step can be made, at least to get rid of some shortcomings. 

Before presenting some relatively novel ideas in modelling the nerve 
pulse transmission it must be stressed that nerve pulse is usually classified 
as a dissipative structure [1], modelled by the parabolic (diffusion-type) 
system with source terms. These models are widely used in biology and 
chemistry [7] and the notion of dissipative structures itself belongs to 
PRIGOGINE [8]. On the other hand, solitonic structures belong to conserva­
tive systems [3]. There is an urgent need to make very clear distinction as 
between the corresponding systems as well as between the solitary waves 
the origin of which is not always clear from physical observations. 

The first idea is to reinspect the basic mathematical models governing 
the nerve pulse transmission. The usual approach is to start from telegraph 
equations and neglect the inductance. This means that the hyperbolicity 
is neglected from the very beginning and the natural result is the parabolic 
equation .which in terms of solid mechanics corresponds to the heat con­
duction equations with an additional source term. It must be stressed that 
the conventional theory of nerve pulse transmission was established in the 
fifties of this century when the knowledge about solitary waves was limited. 
Note that the concept of solitons was introduced only in 1965 [9] and later 
the intensive research began including the development of reductive meth­
ods in order to construct one-wave equations, i.e. evolution equations [10]. 
The evolution equations, as a rule, are given in a moving frame that stems 
from the hyperbolicity of the basic governing system. Quite naturally, the 
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elegant approaches from the soliton theory were not used for parabolic 
equations derived for nerve pulse dynamics. In 1967, LIEBERSTEIN [11] has 
used the natural form of telegraph equations in nerve pulse dynamics solv­
ing the problem numerically. In the eighties the time was ripe to apply the 
ideas of solitonic structures in neighbouring areas. The evolution equation 
for a nerve pulse was derived in 1981 [12] and its various aspects analysed 
later (see summary in [13]). As a result, a novel second-order evolution 
equation typical for nerve pulse transmission gives a natural prolongation 
to the family of known but mainly first-order evolution equations [3]. 

The quest for possible unification of dissipative and solitonic struc­
tures has got recently an important milestone in the framework of contin­
uum mechanics [14]. It has been shown that starting from the Lagrangian 
formulation and introducing a dissipation potential, it is possible from a 
common starting point to derive either diffusion-type systems that may ex­
hibit dissipative structures or conservative systems (perturbed by dissipa­
tion) which may exhibit solitonic structures. 

This extremely interesting facet of nonlinear dynamics is now fast 
developing. Here, in this paper we present in Section 2 the basic equations 
in order to demonstrate the various approaches and then, in Section 3 we 
draw some parallels between the modelling the nerve pulse dynamics and 
the problems of solid mechanics. 

2. Basic Equations 

The conventional initial system of an axon is the following [1]: 

2 OV oia 
?Ta Ca ot + OX + 2?TaI = 0, 

ov R. 0 -;:;- + --22a = , 
vX ?Ta 

(2.1a) 

(2.1b) 

where the notations of [ll] are used: v is the potential difference across the 
membrane, ia is the axon current per unit length and a is the axon radius. 
Further, Ca is the axon self-capacitance per unit area per unit length, R is 
the specific resistance and I is the membrane current density. It is easy to 
derive a second-order equation in terms of v 

02V OV 2 
ox2 = RCa ot + ;;RI, (2.2) 

which can easily be compared with the heat conduction equation. In many 
applications corresponding transmission line equivalent circuit is shown to 
demonstrate the nature of the process, here it is depicted in Fig. 2 [1]. 
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Fig. 2. Transmission line equivalent circuit for a nerve fibre [1) 

If the axon specific self-inductance is not neglected then instead of 
(2.1) we have 

2 OV Oia 
7l'a Ca ot + OX + 27l'a I = 0, (2.3a) 

L oia OV R. 0 ---- + - + --ta = 
7l'a2 ot ox 7l'a2 

(2.3b) 

and its second-order equivalent 

02V 02v OV 2 2 01 
):l 2 - LCa-;::;-f = RCa-;::;- + -RI + -L-;::;-. 
vX vt vt a a vt 

(2.4) 

In both cases, membrane current I as a source term plays an important 
role affecting also the final velocity of the pulse [14]. For a moving frame, 
however, the standard wave velocity Co (c.f. with sound velocity in solids 
[9]) can be used. Following the general ideas of reductive methods [10, 16] 
from the 'two-wave' system (2.3) a 'single-wave' evolution equation 

OV 1 1 
Co- + -m4V + -m2I = 0 ox 2 2 

(2.5) 

can be derived. Here m2, m4 are constants [13] and v = v(x, ~), ~ = cot - x. 
The membrane current I according to the HODGKIN-HuXLEY model [2] 
depends upon 3 additional so-called phenomenological variables, but for 
the basic model only 1 additional variable w is sufficient. This is the 
FrTz HUGH-NAGUf..lO [17] model where 

(2.6) 

with k l , k3 constants. As the additional variable w is not a field variable 
then there is no inertia related to it [14] but it needs its own governing 
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equation. For dissipative structures the governing equation is usually [1, 2, 
17] of relaxation type 

aw at + C01W = qo(v + qI), (2.7) 

where again I' qO, ql are constants. Quite often 1 = 0 [17]. Following this 
line in terms of z = v + ql equations (2.5), (2.6), (2.7) yield 

a2 z az 
aeax + fez) ae + g(z) = 0, 

fez) = bo + b1z + b2 Z2 , 

g(z) = booz. 

(2.8a) 

(2.8b) 

(2.8c) 

Here bo, bl, b2, boo are constants [13]. This is the sought simplest second­
order evolution equation for a nerve pulse transmission that must be solved 
under initial excitation z(O, e) and the proper boundary conditions. In case 
of 1 # 0, a first order addition leads to the wave hierarchy. The full analysis 
of Eq. (2.8) and its stationary variant 

z" + f(z)z' + e-1g(z) = 0 (2.9) 

is given in [13]. In (2.9), the following notation is used: 0' = dj d7], 7] = 
x + ee. The asymmetric pulse obeying all the main physical features is 
easily calculated numerically without any convergence problems. 

3. Qualitative Analysis 

Here we start with some remarks on the stationary form (2.9) of the evolu­
tion Eq. (2.8). Eq. (2.9) as an ODE is of the Lienard type. Its properties 
depend on the roots of fez) = O. The physics of the nerve pulse predict 
the following properties of the roots Zl, Z2: 

Zl > 0, Z2 > 0, Zj # Z2. (3.1) 

In this case the origin is a stable node and we can get a pulse-type solution 
starting from z(O) = 0, z'(O) # O. It is easily seen, that the well-known van 
der Pol equation has 

Zj < 0, Z2 > 0 (3.2) 
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and consequently, the origin is an unstable focus, but there exists a stable 
finite cycle. The van der Pol equation describes relaxation oscillations and 
starting from the pioneering paper by VAN DER POL [18], it has been used 
in electronics, biology, mechanics, etc. The map of a Lienard-type equation 
obeying (2.8b) and (2.8c) contains both cases (3.1) and (3.2) [19J. In some 
sense the"situation can be compared to the case of a linear oscillator with 
weak and strong damping. In the case of weak damping the motion is still 
oscillatory (c.f. with the limit cycle) and in the case of strong damping 
there is no oscillatory character at all (c.f. with the pulse-type solution of 
(2.9) obeying (3.1)). The coupling of oscillatory and pulse-type ODE's of 
(2.9)-type can be of interest in heart dynamics. 

The next problem is centered around the physical motivation of inner 
variables. Here we have employed the fact that voltage v is treated as 
an observable variable and variable w - as an inner variable. From the 
wave equation for v a first order evolution equation is derived while inner 
variable w is governed by a kinetic equation. Both equations together form 
a second-order evolution equation (see (2.8)). A natural question arises - is 
this approach general and can it be used also for other cases? The answer 
needs a serious analysis. The general formalism of inner variables is given 
by MAUGIN [14]. His examples in solid mechanics are related to damage 
coupled to elasticity or to plasticity. In elasticity, for example, damage is 
described by a scalar 1) satisfying 0 ::; 1) ::; 1 and it measures the decrease 
in material surface transmitting internal forces together with the isotropy 
hypothesis. It seems that the general idea, shown in Section 2, could also 
be applied in this case because of the linear coupling. 

Within the framework of inner variables, the notions of thermodynam­
ical forces are naturally involved. Consequently, the concepts of irreversible 
thermodynamics must be used, particularly also in nerve pulse dynamics. 
As to the latter problem, only recently attention was paid to the thermody­
namical justification of mathematical models widely used in practice [20J. 

Finally, let us mention the role of the Fischer equation 

(3.3) 

where D is the diffusion coefficient and f(u) is a quadratic polynomial [21]. 
Its first application was in biology (propagation of genes) but later equa­
tion (3.3) with special f(u) was also applied in nerve pulse transmission 
[1,5]. On the other hand, however, this is a heat conduction equation with 
a source ~erms processing also the progressive-type solutions. Reflecting 
the diffuse character of the process, this model could be compared with 
(2.8), especially on the stationary level (2.9). "It is easily concluded that 
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the ODE derived from (3.3) is also of the Lienard type. The similarity of 
various physical processes gives a ground to serious comparative analysis of 
dissipative and solitonic structures started in [14]. The modified heat con­
duction equations [22] may also serve as a test problem for the comparison. 

There are two tendencies in classical science that are sometimes work­
ing against the progress. First, some understandings in a specific area of 
science might be 'graven on a stone tablet' [1]. Second, there is a ten­
dency to split up the problems into their smallest components forgetting 
to put the pieces back together again [8J. However, the universality of ba­
sic ideas of Nature gives rise to striking interdisciplinary ideas permitting 
to avoid these tendencies. Wave motion is one of such rich areas of sci­
ence, were ideas from comparatively unrelated areas - solid mechanics, bio­
phisics, seismology, acoustics, etc. - can be correlated in a natural way. 
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