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Abstract 

The derivation of crystallographic groups in the Euclidean n-space S" (think of n = 2,3) 
will be illustrated by the space groups Pm, Pb and Bm, Bb belonging to the geometric 
crystal. class (point group) m. Some new directions of investigations will be indicated. 
e.g. the orbit for densest ball packing. minimally presenting fundamental polyhedron. 
data base and computer realization for each space group class amongst the 219 (230) 
ones. This paper is based on the lectures held several times by the author. 

1. Introduction, Pm as a Typical Example 

Figures like point systems, ideal crystals, etc. in the Euclidean n-space 
er can be characterized by those geometric transformations which carry 
a given figure fJ in itself. The set G of these one-to-one self-mappings of 
fJ C Sn is equipped by the operation of composing a first mapping a E G 
with a second one f3 E G to obtain. the product 1 = af3 E G. The following 
notations indicate this for any point X E fJ 

a: X ~ Xo; f3: X ~ X f3 ; ,:= af3: X ~ X-r := (XO)f3. (1.1) 

Introducing an origin 0 E sn and a vector basis 

(1.2) 

for the Euclidean real vector space En, any point X E Sn can be described 
by the position vector 

n 

OX := x = Lxiei =: xiei 
i=l 

ISupported by Hungarian Nat. Found. Sci. Research (OTKA) 1615 (1991). 

(1.3) 
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(summing up for i = 1,2, ... , n by Einstein convention, used also later on) 
with the real coordinates xl, x 2 , ••• ,xn E R. Then the inner product (of 
signature (+, +, ... , +)) 

(j) : En X En -+ R, (Xj y) = (xieii yiej) = 
. = xiyi(eii ej) =: xiyigij 

(1.4 ) 

is defined in En by the symmetric matrix gij =: (eij ej) = (ejj ei) = gji. 
Thus, the distance for any two points and the angle E [0,11"] of any two 
vectors can be usually introduced by 

and 
cos a(x,y) := xiyigijh/(xrxsgrs)(yuyvguv), (1.5) 

respectively. An affine transformation 0: = (A, a) of IJn is defined by a 
-+ 

linear transformation A of En and a vector a := OOOl. Here 

XOl := xA + aj (xieit = (xiedA + ajej = 
= xi(eiA) + ajej = x i a1ej + ajej = (xi a.1 + aj)ej 

(1.6) 

show how to get the image of a point X(x = xie£) by the matrix a{ of A and 
-+ . 

by the vector OOOl =: a = aJej. The product of o:(A,a) and t3(B, b) will be 

o:,B(AB,aB + b). ( 1.7) 

With the identity mapping 1 = (1,0) the inverse of 0: will be 

-1 _ (A )-1 - (A-1 _ A-I) 0: - ,a - ,a , ( 1.8) 

where A -1 denotes the inverse of A. In particular, 0: = (A,a) is said to be 
an isometry of IJn, if A preserves the inner product, i.e. for any X, y E En 

(xAj yA) = (Xi y). ( 1.9) 

For the matrix a1 of A this implies the matrix equation 

(1.10) 
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l =1·e
1

+ 2e2 +1·e3 

• 

Fig. 1.1. A monoclinic primitive lattice mP with Gramian (1.11). 
Here -0/2:::; 912/..)911922 = cos(e1,e2}:::; 0 can be assumed 
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• 

• 

Summarizing, the affine transformations of sn form a group Aff Sn with 
the composition as group operation. The isometries of Sn is a subgroup 
Isom Sn C Aff Sn. The transformation group of a figure f} C Sn can be 
considered as a subgroup of Aff Sn or rather a subgroup of Isom Sn. 

As an example, we introduce the crystallographic space group Pm 
consisting of two types of isometries of S3: The monoclinic primitive lattice 
LPm =: mP is spanned by three translations (Fig. 1.1) 

(l,eJ),(l,ezL(l,e:d with the Gramian 

(9ij):= ((ei;eJ):= (~~: ~.:~ ~) 
o 0 933 

(1.11) 

and the othcr trallSfOl'lllaJiolls (1'cjb:l-io7l8 . .f/l-idl: j'cjlccf-ions) arc of t he form 
(M,l := lie;) with integer triples (11. /'2. (l) (lnd with 

( 1 
e·M = mje· (71l l ) = I 

' t J' , . \ 
(1.12) 
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The space group Pm is no. 6 in the International Tables (1976, 1983). It 
is briefly given by the following notations 

2 
1 
1 

c 
b 
a 

1 
m 
m 

X,Y,z 
1 

X'Y'2 
x,y,O. 

x,y,z (z means - z) 
(1.13) 

In dimension n = 3, x = xel + ye2 + ze3 usually denotes a general position 
vector, and in the first row of (1.13) the row matrix (xyz) is understood 
modulo an integer triple, characterizing the lattice mP in (1.11) implicitly. 
In the first row of (1.13) 

(x y -z) = (x y z) C 
1 ) mod integer triple 

-1 

means just reflections and glide reflections at (1.12). 
In the first row of (1.13) 2 means the number of the c-type (most 

general) Wyckoff positions (orbit type) in a unit parallelepiped (unit cell) 
with respect to the basis {ei} at (1.11) (Fig. 1.2): 

e, 

E, 

Fig. 1.2. A unit parallelepiped (unit cell);P mP for mP (see (1.14» 
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~-------------------oE; 

E' 1Q-------~-----------o 

Fig. 1.3. A fundamental domain .1pm for the space group Pm, which serves a minimal 
presentation described at formulas (1.17-1.19) 

~mP := {p(pI ,p2 ,p3) : 0 ~ pI < 1, 0 ~ p2 < 1, 0 ~ p3 < 1}. (1.14) 

To each point of this orbit the trivial stabilizer subgroup 1 (in Pm) is 
associated. 

In the second row of (1.13) we find the b-type orbit with 1 point in the 
unit cell (1.14). From this orbit each point is fixed under certain reflection 
in Pm, e.g. 

Now the stabilizer subgroup is denoted by m = {l, M} as a linear finite 
matrix group consisting of 

(1) = C (1.15) 

In the third row of(1.13) we find the a-type orbit analogously. From (1.13) 
we read off a fundamental polyhed1'01t (Fi!]. 1.:1) by halving the unit cell 
~mP: 
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This is an asymmetric unit for the space group Pm. This marked par­
allelepiped OEIE12E20'E{EbE~ is equipped by face pairing transforma­
tions {involutive face identifications} as follows. 

Jl: OEIE12 E2 - OEI E12E2 reflection in a (mirror) plane, 
Jl' : 0' E~E{2E~ - 0' E~E{2E~ plane reflection again, 
Tl : OE2E~O' - EIE12E{2E~ translation by el, 

( 1.17) 

Tt: OEIE{O' - E2E12EbE~ translation by e2. 

These face pairing isometries generate the space group Pm, and they in­
duce the edge classes of ffpm. Any edge class determines a relation for 
these generators. E.g. for the class ==? {OE}, E2E12} we have the follow­
ing Poincare algorithm: 

(OE1; OE1E12E2) 
/.L (0 El; 0 El E12E2)' -

(OEl ; OE1E{ 0') 
T2 

(E2E12; E2E12E{2E~), -
(E2E12 ; E2 E12 E1O) 

/.L 
(E2E12; E2E12E1O), (1.18) --1 

(E2E12 ; E2E12E{2E~) 
T2 

(OEl ; OE1E{O'); periodically, -(OEl ; OEI E 12 E2) would be the next flag, again. 

That means, we start with a flag of incident vertex 0, edge OEI and face 
o El E12E2 of ffPm and consider the image flag under the face pairing (1.17). 
Then we keep the image edge (oriented) and link the second face incident 
to this edge at ffpm, and so on (see MOLNAR, E. (1992), MOLNAR, E. -
PROK, 1. (1988)). Now, the cycle transformation, as a product, is 

JlT2wr:;1 = 1 the identity mapping. 

Because it fixes the edge OEl and - by the right angles at OEl and E2E12 
- it fixes also the starting flag. 

In Fig. 1.3 we did not indicate all the 5 edge classes induced by the 
generators on ffPm. We have 5 edge relations for Pm and, with the 2 
reflection relations, we finally obtain a minimal geometric presentation for 
the space group 

(1.19) 
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Note that the translation 73(1, e3) is a product fJ.fJ.' ofthe generators. Thus, 
every transformation of Pm can be expressed as a product (word) of the 
above generators and their inverses, and every relation in Pm is an algebraic 
consequence of the above defining relations. 

For instance, the relation 1 = 7173711731, expressing the commuta­
tivity of the translations 71 and 73 = fJ.fJ.', can be derived as 

, -1( '-I -1) ( , -1 ') -1 1 
71fJ.fJ. 71 fJ. fJ. = 71fJ. fJ. 71 fJ. fJ. = 71fJ. 71 fJ. = . 

Indeed, it is a consequence of the 1st, 2nd, 6th, 4th defining ·relations. 
We imagine that the group Pm transforms the fundamental polyhe­

dron f/Pm first onto its face neighbours. E.g. the image ;}T1 is adjacent to 
f/ at the common face 

EIEI2E~2E~ =: fT! = (OE2E~O'r1 =: (fT-1r1. 
1 

Then the second neighbours follow, e.g. 

f/Tl and f/J1.Tl are adjacent at the common face (fJ1.r1 = (fJ1.t T1 ; 

f/Tl and f/T2Tl are adjacent at (fT2)"1 = (f -1 r 2T1 , T2 
and so on. We obtain a space tiling by the Pm-images of f/Pm. SiPm itself 
represents the identity 1 of Pm, each other represents a word of the gen­
erators obtained by the path crossing the faces of image polyhedra, con­
secutively. Any circle path (i.e. circuit) in this group graph of Pm, above, 
means a relation amongst the generators. Without any more explanations 
we indicate the geometric proof that 

any relation is an algebraic consequence of the defining relations. 
Indeed, any circle path can be simplified around the edges of the tiling 

step-by-step to the trivial circuit. 
We emphasize that Pm has also other fundamental polyhedra with 

other presentations, analogously as above. A typical one is the very im­
portant Dirichlet polyhedron belonging to a general orbit (c-type) of Pm. 
Fig. 1.4 shows a hexagonal prism 5JPm( D) to a kernel point D( dl, d2

, ~). 
The Dirichlet polyhedron itself is defined as 

5JPm(D) := {X E S3 : DX :5 X DCt for any Q E Pm}. (1.20) 

Only finitely many half-spaces occur at forming 5JPm(D), in general. We 
have a presentation again for the space group 

P ( ' 1 2,2 -1 -1 m = fJ., fJ. ,7}, 72, T12 - = fJ. = fJ.. = fJ. TlfJ. 7 1 = fJ. T2fJ. T2 = 
-1 , , -1 , , -1 , '-1 

= fJ. T I2fJ. T I2 = fJ. 71fJ. Tl = fJ. T2fJ. T2 = fJ. T12fJ. T12 = 

-1 -1) 
=TI T2 TI2 =T2 T17 12 • (1.21) 
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~m 

Fig. Lt. The Dirichlet polyhedron j)Pm for the orbit of a point D under the space group 
Pm (see (1.20» 

For each general point X(x!, x2 , x3
) of c-type we can consider the orbit of 

X under Pm and the ball packing with centres at the orbit 

x Pm := {Xa E I.f3 : a E Pm} 

and with radius 

r(X,Pm) = min {-21d(X,xan. 
aEPm,X:f:.Xa 

The density of the ball packing is defined now as 

43/ 6(X, Pm) = 3"T 1f" vol5'Pm, 

where the volume of 5'Pm depends on the Gramian in (1.11) 

vol5'Pm = ~vol9' = ~J(911922 - 912921)933. 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

Thus, we can ask for the densest ball packing under the space group Pm up 
to a similarity, and for the maximal density depending on the isomorphism 
class of Pm. 

6(Pm):= max {6(X, Pm)}. 
X,(9ij) 

(1.26) 
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For the orbits of c-type the densest ball packing is attained with a point D 
and Dirichlet polyhedron SJPm(D) at formula (20), with Gramian, radius 
and density 

( 

4 -2 
(9ij) = -2 4 

o 0 

0) 1r'V3 o ; r = 1, 8(Pm) = -9- ~ 0,6046, 
16 

(1.27) 

respectively. The same question for the orbits of a- or b-type is answered 
by Gramian, radius and the same density as 

_ (4 -2 0 ) _ _ 1rV3 
(9ij) = -2 4 0 ,r = 1, 8(Pm) = -9-' 

o 0 4 
(1.28) 

We remark that an orbit and a ball packing under Pm has a larger self­
symmetry group, in general. This is the space group P2/m no. 10 that 
will be described in Section 6. 

2. About the History and the General Theory 

It was a great discovery in the history of science that E. S. FEDOROV' 
(1890), A. SCHOENFLIES (1891) and W. BARLOW (1894) completed the list 
of 219 isomorphism classes (or 230 oriented affine classes) of the crystal­
lographic space groups in the Euclidean space 1f3. Thus, the initiatives of 
F. C. HESSEL (1830), A. BRAVAIS (1850), C. JORDAN (1867), L. SOHNCKE 
(1879) and others had been fulfilled before the discovery of material crys­
tal structures by M. VON LAUE (1912). 

Famous mathematicians as H. MINKOWSKI (1905), G. FROBENIUS 
(1911), L. BIEBERBACH (1912), H. ZASSENHAUS (1948), A. C. HURLEY 
(1951, 67), E. C. DADE (1965), R. BULOW (1967), J. NEUBUSER (1969), 
H. WONDRATSCHEK (1971) and many others worked on the n-dimensional 
theory, particularly for n = 4. Finally by 1973 the 4783 isomorphism 
classes (4895 oriented affine classes) had been listed by computer and 
published (1978) in the book of H. BROWN, R. BULOW, J. NEUBUSER, 
H. WONDRATSCHEK, H. ZASSENHAUS. 

There is a Soviet school, the students of B. N. DELONE (DELAUNAY) 
as S. S. RYSHKOV, E. P. BARANOVSKI, A .. M. ZAMORZAEV; moreover, 
A. V. SHUBNIKOV, N. V. BELOV and their students and many others. 

A living classic is H. S. M. COXETER. There is a Hungarian school 
of the discrete geometry around L. FEJES TOTH (1965). He initiated the 
systematical investigations how to characterize a regular system of figures 
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by extrema properties. Thus, he refreshed the classical ideas of J. KEPLER 
and G. LEIBNIZ. 

New classification methods had been developed by B. GRUNBAUM 
and G. C. SHEPHARD (1987), moreover by M. S. DELANEY (1980) and 
A. W. M. DRESS (1987). We mention a recent work of A. W. M. DRESS, 
D. HUSON, E. MOLNAR (1991) where a classification problem in tf3 has 
been solved by D-symbols (DELONE-DELANEY-DREss-symbols) and by 
computer. 

Of course, many physicists, crystallographers and other scientists 
elaborated the methods and the theory of crystallographic measurements. 

We mention only the relations to the geometric number theory, to the 
algebra, topology, discrete and differential geometry. 

Now we give a sketch on the general concepts and theorems which 
lead to the classification of the space groups in {)2 and tf3 or generally in 
{)n, up to n = 4 nowadays. 

A group G C Isom {)n of isometric transformations acts on {)n dis­
cretely or discontinuously, or G is called a discrete group, if any orbit 
XC := {XO< E {)n : a: E G} has the property: any compact point set in gn 

meets only finitely many points from the orbit. By other words: for any 
orbit XC there exists a positive real radius r(X, G) such that the balls of 
radius r, centred in the points of xc, have disjoint interiors. 

Then we can define a fundamental domain :Jc for the group C, a 
closed point set with face identifications on its boundary. IvIoreover, the 
fundamental tiling, as the G-images of :Jc, is required to cover the whole 
space {)n with disjoint interiors. This was illustrated for G = Pm in the 
introduction. 

A discrete group G is called crystallographic or briefly a space gTfJ"llp 
if it has a bounded fundamental domain :Jc. There is a dccp result. of 

A. SCHOENFLIES (n = 2,3) and 1. BIEBERBACH (for n 2: :}): 
Theorem 2.1. Any space group G of (In has n illdependellt traw;/atiolls, 
generating a commutative invariant subgroup of G. 

Thus, we obtain the lattice of G denoted by Lc. Tlj(~ll allY space 
groll p G is a set of point transformations of the fOfm 

G:={a:(A,a)}, (2.1) 

where A preserves the inner product of the Euclidean vector space En (sec -formula (1.9)) and the vector a := 000< depends also on the origill (). As 
formulas (1.6) and (1.7) show, the mapping 

(2.2 ) 
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keeps the corresponding multiplications, i.e. it is a homomorphism. Thus 
the set of linear parts 

Go := {A} (2.3) 

forms a group, the so-called point group of G, and the kernel of the above 
homomorphism is just the lattice 

La := {.x(l,I)} mapped onto 1. (2.4) 

We simply say that the vector I E En belongs to the lattice La. Any coset 
in the factor group G jLa ~ Go: 

{(A,a+I): (1,1) E La} (2.5) 

is described by A E Go and a vector {cohomology} class a + La as the for­
mulas (1.7) and (2.7) characterize (later on). The Schoenflies-Bieberbach 
theorem has important consequences: 

Con. 1. G is a space group, iff the point group Go is finite. 

Con. 2. (Barlow theorem) The orders of rotation subgroups in Go can 
be 1, 2, 3, 4, 6 (BARLOW stated this for n = 2,3). 

Con. 3. (Bieberbach-Frobenius theorem). Two space groups G and G' 
are isomorphic iff they are conjugate by an affine transformation ip(F, f) of 
{In, i.e. 

(2.6) 

An important formula is for o:(A,a) and ip(F, f) as follows: 

ip-I mp = (F, f)-I(A,a)(F, f) = (F-I, -fF-I)(AF,aF + f) = 

= (F- I AF, _fF- 1 AF + aF + f) = (F- 1 AF, fCl - F-1 AF) + aF). 
(2.7) 

In particular: 
If o:(l,a) is a translation, then ..p-l u ..p(1.aF) is also a translation by 

the vector aF. 
Ifip(l,f) is a translation, then ip-10:y(A.f(1-A)+a). The posit.ioll 

vector ":"f is just fixed at 0:, iff the null vector ° is fixed at 'P-1n'P, i.e. 
f(l- A) + a = 0. 

If ip(F,O) fixes the origin, then <p-IO:'P(F- 1 AF,aF). 
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Theorem 2.2. Classification of space groups in Bn). 
a) There are 17, 219, 4783 isomorphism classes of space groups in B2, B3

, 84
, 

res pecti vely. 
b) The numbers of affine conjugacy classes Bn by positive affinities <p(F, f) 
with det F > 0 are 17( n = 2), 230( n = 3), 4895( n = 4). These are the 
numbers of proper classes under orientation preserving affinities, which are 
finite for any dimension n. 

The last assertion is the answer to the 18th Hilbert problem by 
L. BIEBERBACH (1912). 

The formula (2.7) is the main tool of deriving the space groups in Bn 

for. any n. Preparatory results are collected in 

Theorem 2.3. For n = 2,3,4 there are 
i) 10,32, 227 (271) point groups in the role of Go. 

ii) 5, 14, 64 (74) Bravais types of lattices LG, distributed into 
4, 7, 33 (40) crystal systems and 
4, 6, 23 (29) crystal families. 

iii) On the base of Go andLG we have 13,73,710 (780) arithmetic crystal 
classes. 
The number of proper classes (under orientation preserving affinities) 

are given in parentheses, respectively. 

The algebraic derivation of "pace group classes in Bn is based on de­
termining all the maximal finite su ugroups of the full group G Ln(l) of uni­
modular n - n matrices, i.e. with entries from the integer numbers land 
with determinants -l. 

Theorem 2.4. Up to unimodular conjugacy there are finitely many max­
imal finite subgroups of G Ln(l). For n = 2,3,4 these numbers are 2,4,9, 
respectively. The representatives of these conjugacy classes characterize 
the most symmetric lattices in Bn by their full symmetry groups (each fix­
ing a lattice point as origin). 

We remark that this problem is solved also for n = 5 by S. S. RYSKOV 
and Z. D. LOMAKINA (1972, 1980) and by W. PLESKEN and M. POHST 
(1977, 1980) for 5 - n - 10. However, the derivation of other data, 
analogous as before, has not been completed yet for n - 5. 

Before sketching the general procedure we turn to illustrate it with 
concrete exam pIes in ~. 



SOME ASPECTS ON THE CRYSTALLOGRAPHIC GROUPS 

3. Derivation of the Arithmetic Crystal Classes mP 
and mB in the Geometric Crystal Class m 

203 

The geometric crystal class Go = m consists of two linear transformations 
of E3 with presentation 

m := (M - M2 = 1). (3.1) 

M is an orthogonal reflection in a vector plane E2 e E3. We look for the 
3-lattices L3 invariant under the point group Go = m. First we prove the 
following: 

Proposition 3.1. For any m-invariant lattice L3 there are three inde­
pendent translation vectors el,e2,e3, such that eI,e2 span the sublat­
tice L2( e L3) in the vector plane E2 of reflection, and e3 spans sublattice 
LI(e L3) orthogonal to L2. 

Proof: Let 1 E L3 a translation vector not lying in E2 and not orthogonal 
to E2. Then this is the case also for the image vector IM. Moreover, 
1 + IM E E2 because it is fixed at M: 

(1 + IM)M = IM + 1M2 = IM + 11 = 1 + IM; (3.2) 

and 1 - IM 1. E2 because (Fig. 3.1) 

l-tM 

IM "'J 

Fir}. :I.1. Any vector 1 of general position 1.0 t.he vect.or plane E:? of reflection M. induces 
1 + IM E E2 and 1 - IM .1. E2 

(l-IM)M = IM -1M2 = -(I-lM). (3.3) 
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Take another lattice vector, not lying in the vector plane spanned by 1 and 
IM, then we obtain another lattice vector in E2. Thus, we guarantee a 2-
lattice in E2 and a I-lattice orthogonal to E2j so eI, e2 as a basis for L2, 

furthermore, e3 as a basis for Ll can be chosen. Q. e. d. 
The primitive monoclinic lattice mP =: L3 is defined by any basis 

el, e2 of L2 in the mirror plane E2 and by a shortest lattice vector e3 

orthogonal to L2 (Fig. 1.1). 
Any translation vector 1 E L3 may have a form (Fig. 3.1) 

1= [Iel + [2e2 + [3e3 with components 
[i == 0 or ! mod Z (the set of integers). 

(3.4) 

From O,O,!) ,(O,!, n ,(!,!,!) mod 13 (triples of integers) any will be 

equivalent to the first choice (!, 0, !). In the other cases we consider either 

or 

(3.5) 

as new bases. Both are obtained by GL3 (Z) matrices. Then, only (!, 0, !) 
mod Z3 vectors occur in L3. If, say, (O,!,!) mod 1 3 also appear in L 3 , then 

( -!, !, 0) would be in L2, although el, e2 was a basis in L2, a contradiction. 
That means, we have one possible single face centred monoclinic lattice 
L3 = mS besides the primitive one, up to unimodular equivalence. 

Let bI, b 2 , b3 be the B-centred basis with 

( bI ) (1 0 1) (e1) ( e1 ) ( 1 b2 = 51 I? e2 or e2 = 0 
b3 - 2" 0 2" e3 e3 1 

as it is indicated in Fig. 3.2. 

o 
1 
o 

Then the linear reflection M can be expressed in the primitive lattice 
mP as in formulas (1.12), (1.15) and in the B-centred lattice (from the 
lattice class mS) as well. 

(3.7) 
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It is a basic fact that this formula can be obtained from (1.12) by conjugacy 
under (3.6). Indeed by (1.12): 

(

1 0 
o 1 
1 0 

-1) (hI) M (1 0 0) (1 0 o h2 1-+ 0 1 0 0 1 1 h3 0 0 -1 1 0 
hold. Multiplying from left by the inverse, as (3.6) shows, 

( ~~) ~ (3 ~ 3) (~ ~ ~) (~ ~ ~ 1 )· (~~) = h3 -! O! 0 0 -1 1 0 1 h3 
( ~ ~ ~1) (~~) , (3.8) 

-1 0 0 h3 
i.e. the conjugacy yields the reflection formula (3.7) in the B-centered 
lattice. As we see, this conjugacy is no more unimodular but rational, 
i.e. Q-conjugacy. Another way, the basis transformation bi = bfej or the 
matrix equation 

( 
bl bj bY) 
b~ b~ b~ 
bl b~ b~ 

(1 0 0) (0 o 1 0 = 0 
o 0 -1 -1 

(3.9) 

equivalent to the affine conjugacy, would imply the equations 

bl = -b~, bj = -b~, -by = -b~; b~ = b~, b~ = b~, -b~ = b~; 
b~ = -bL b~ = -bj, -b~ = -by; i.e. 

. (bl bj by ) . 3 1 2 2 1 
(bD= b~ b~ 0 ,detbi=2bl(blb2-blb2)' 

-b} -bj by . 
(3.10) 

This means, the affine conjugacy (3.9), expressing geometrically the 
same reflection, is no more unimodular with a I-matrix. 

We say that we have two arithmetic classes, denoted by mP and mB, 
in the same geometric class m: . 

(3.11) 
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~B 

Fig. 3.2. The basis bi. b2. ba of the monoclinic B-centn,d lattice mB and the unit paral­
lelepiped !P mB 

4. The Two Space Groups Pm and Pb in the 
Arithmetic Crystal Class mP 

Any space group G in the arithmetic class mP consists of transformations 
like 

).: (x,y,z) 1-+ (x,y,z) + integer triples (1.4) 

p.:(X,y'Z)>-+(X,y'Z)C 1 -J +(m',m',m')+ integer triple" 

expressed in the P-Iattice basis (Fig. 1. /). 
Then any transformation JLJL will be a translation, because MM = 1 

is the linear identity: 
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(x,y,z)~(x,y,z) C I 
~(X,y,Z) + (m" m',m3) C 

) 
( 

1 2 3) jJ + m ,m ,m 1-+ 

-1 

1 + m ,m ,m 
) 

( 1 2 3) 

-1 +integer triples 

leads to a congruence, called FrobenitLs congruence, 

2m
1 == ° mod Z, 2m

2 == ° mod Z, and 
no restriction for m 3

. 

We shall prove the following 

207 

( 4.2) 

( 4.3) 

Proposition 4.1. Any solution 0[{4.3) will be aflinely equivalent eitber to 

or to 

(m\m 2,m3) == (0,~,0)modZ3, then G = Ph (4.5) 

is a new space group in tbe aritbmetic class mP. 

Proof: We apply the formula (2.7) with <,0(1, f), f = (11,12,13
) for JL in 

(4.1). Then, the affine conjugacy leads to 

'1'-'1''1' = (M, -lM+f+ m) = (C I _ J ,(m', m',m
3 + 2/'») . (4.6) 

Thus, we may assume in (4.1) that m3 == ° modZ, because of taking 
f3 = - ~m3 in (4.6) otherwise. The solution triples are: 

(m\m 2,m3) == (0,0,0) modZ3, (4.7) 

123 1 1 11 3 
(m ,m ,m ) == (0'2,0);(2,0,0);(2'2,0) modI. (4.8) 

The solution (4.7) just leads to G = Pm, discussed in the Introduction. 
The other solutions in (4.8) will be affinely equivalent to the first one. 
Indeed, 



208 E. MOLNAR 

realize the corresponding affine equivalences. For instance, with the third 
vector class in (4.8) and with <P2 we have 

-1 
<P2 J..l<P2 = 

- ) (1 0 0) (!,!, 0) ( 1 
1 -1 1 0 j 2 2 -1 

-1 0 0 1 0 

= (C 1 J '(O'~'O)), (4.10) 

as desired. However, there is no affine equivalence between the vector 
classes (0,0,0) and (0, !, 0), as we easily see. Q. e. d. 

This new space group Pb appears under no. 7 in the International 
Tables (1976, 1983) analogously like 6.Pm at (1.13) 

2 a 1 X,Y,Zj 
1 _ 

x,y + 2'z; (z := -z). (4.11) 

Again, we can form a fundamental domain SiPb by halving a unit cell 
;PmP (translated with resp. to Fig. 1. 4). JiPb is equipped by face pairing 
isometries and the presentation (a minimal, again, see E. MOLNAR (1987)) 

Here the generators are (Fig. 4.1): 

J..l: ABC D -+ H G F E glide reflection, 
Tt: AE H D -+ B FGC translation by el, 
T:3: ABFE -+ DCGH translation bye3. 

(4.12) 

( 4.13) 

As we see, Pb is a fixed point free space group. As a consequence, SiPb 
geometrically realizes the space fOml 83/Pb, i.e. the set of Pb-orbits in 1f3. 
This means that the orbits have a natural locally Euclidean metric, and 
any orbit has an orbit-neighbourhood isometric to a Euclidean ball. The 
gluing procedure, induced by the face pairings, gives us pictures of ball­
like neighbourhoods for boundary points of ~Pb. E.g. the eight corners of 
SiPb, glued together, serve a full ball for the orbit containing the vertices. 
We see a compact (topological) space with locally Euclidean metric. In 
general, the 10 fixed point free Euclidean space groups provide us all the 
compact space forms with metric of zero (sectional) curvature. This fact 
only refers to the aspects in the topology and differential geometry. 

---------- - ---- --------------------- -----
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O ..... __ -+-_~H 

C fF----.... --.... 
.......... :1'---. 

E'2 
o ....... . 

I 
~, OOOHo;Y= -eo--.E 

8~-4' 
Fig. 4.1. A fundamental domain Jipb giving a minimal geometric presentation for the 

non-orientable Euclidean space form 8 3 /Pb (see formulas (4.12-4.13)). The 8 
corners amount a ball-like neighbourhood for the Ph-orbit of vertices 

We can ask for the densest ball packing by the orbits of Pb, as we 
made for Pm at (1.26). The result is surprising. If the primitive lattice 
mP is given by the Gramian 

~) , 
8 

(4.14) 
o 

and the point X has the coordinates (.1', y, -t) or (:r, y, *), then the density 
of the unit ball packing under Pb hy (4.11) equals 

6(X,Pb) = 4;' /~J8(8'4-4 ·4) = IT /J18 ~O.7405. (4.1S) 

This is just the densest lattice-like ball packing in 83
. Now the orbit X Pb 

itself is a face centred cubic point-lattice with self-symmetry group Fm3m, 
larger than Pb. The Dirichlet-polyhedron is just the well-known rhom­
bododecahedron. 
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5. The Space Groups Bm and Bb in the 
Arithmetic Crystal Class mB 

We proceed analogously as before. Any space group G in the arithmetic 
class mB consists of transformations like 

).: (x,y,z) 1-4 (x,y,z) + integer triples 

J.L: (x,y,z) 1-4 (X,y,Z)( ° ° -1) +(~l,m2,m3~ ° 1 ° +mteger trzples 

-1 ° ° . 
(5.1) 

expressed in the B-Iattice basis by (3.6). 
Again, J1.J1. is a translation in the lattice mE (see (4.2)) 

( 1 2 3) ( 1 2 3) 
m ,m,m (0 ° -1) m ,m,m _ 3 ° 1 ° + =(O,O,O)modl, 

-1 ° ° 
i.e. 

_m
3 + m1 == 0, 2m

2 == 0, _m
1 + m3 == ° mod l. (5.2) 

Proposition 5.1. Any solution of (5.2) will be affinely equivalent either to 

(mI,m 2,m3
) == (0,0,0) modZ3

, then G = Bm 

( 1 2 3) _ ( 1) 3 h G or to m,m,m =\0'2,0 modZ, ten =Bb. 

(5.3) 

(5.4) 

These two space groups Bm and Bb are in the arithmetic crystal class 
mB. 

Proof: By (2.7), with ~(l, f), f = (l,J2, 13
) we obtain 

~-1J.L~ = (M, f(l - M) + m) = 

= (UI ! 11) ,(fl+f3+m"m2,f3+fl+m3)). 
(5.5) 

Thus, we may assume in (5.1) that m1 = 0, otherwise we choose 
l + 13 = _m1 in formula (5.5). Then, from (5.2). we have 771

3 == ° and 
m 2 = 0 or ~ mod l. Q. e. d. 
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The space group Bm appears under no. 8 in the International Tables 
(1976, 1983): 

Coordinates of equivalent positions (i.e. centerings)(O, 0, 0), (~, 0, ~)+ 
4 b 1 X,Y,Zj x,y,z (z means - z) (5.6) 

2 a m x,y,O. 

This means, the coordinates are understood in the primitive lattice mP, but 
the B-centering translations !el + !e3 + mP are included in this informa­
tion. Then we have 4 Wyckoff positions of (general) type b with trivial sta­
bilizer 1, and 2 positions of type a with stabilizer m. In Fig 5.1 we have pic­
tured the fundamental domain SiBm, where the face pairing generators are 

Fig. 5.1. A minimally presenting fundament al domain SiBIIl for the space group Bm (5. i-
5.8). The 6 corners together form a neighbourllllod as a half-ball ill accordance 
with the fact t hat. the stabilizer slIbh rOllp of each vertex is a reflection group of 
order 2. 

JL: OE1 EI 2 E2 -- OEI EU E2 plan(' reflection, 

{3: OE2BI2Bt -- Bt BI2 EI2E1 glid(' reflection, 

T2: OEI Ht -- E2E12B12 translation by e2 = b 2 • 

(5.7) 
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Thus we obtain the minimal presentation 

B ( ~ 2 (32 3-2 -1 (3 ~-1 -1) m:= J.l,I-', 1"2 - 1 = J.l = J.l J.l! = jl1"2f.11"2 = 1"21-' 1"2 • (5.8) 

The densest unit ball packing under the space group Bm can be taken 
either for (general) b-type orbits or for a-type orbits. For b-type orbits we 
obtain the maximal density 

S = 11:-/3/9 ~ 0.6046 (5.9) 

with Gramians 

( 8 -2 0) 
or ((bi;bj)) = -2 4 2 

o 2 8 
(5.10) 

expressed by the primitive basis or the B-centered one, respectively, and 
with a centre X(xel + ye2 + ~e3). For a-type orbits we obtain the absolute 
maximal density 

S = 11:/V18 ~ 0.7405 (5.11) 

with Gramian 

((bi; hj)) = (~2 ~2 -;2). 
-2 2 4 

(5.12) 

This is the densest lattice-like packing again with self-symmetry group 
Fm3m. 

The space group Bb is no. 9 in the International Tables (1976, 1983). 

Coordinates of equivalent positions (centerings):(O, 0, 0), (!, O,!)+ 
4 a 1 X,y,Z; x,y,!,z (z = -z). 

(5.13) 
A fundamental domain ~Bb is pictured in Fig. 5.2 with face pairing gen­
erators 

J.l: OBI B 13B 3 -+ B~B~B~3B~ glide reflection, 

1"1: OB3B~B~ -+ BIB13B~3B~ translation by bI, 

1"3: BI3B~3B~B3 -+ BIB~B~O translation by h3 

and presentation 

Bb ( 1 -1 -1 -1 -1) := J.l, 1"1, 1"3 - = jl1"1jl 1"3 = jl1"3jl 1"1 = T1 T31"1 1"3 • 

(5.14) 

(5.15) 
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8' 
n--~. 3 

213 

Fig. 5.2. A fundamental domain SiBb, providing the 3-generator presentation (5.14-5.15). 

This represents the non-orient able Euclidean space form If3 /Bb 

This presentation is not a minimal one. Indeed, the translation, say, 

can be expressed by the other two generators and first we get 

Bb ( 1 2 -2 -1 -1 -1 -1 -1 ) := Jl., Tl - = Jl. TIJl. T1 = T1Jl.T1 Jl. TI Jl. TIJl.· 

Now, we introduce the glide reflection 1/ = Jl.T1 with 

(1,~,O) 

(5.16) 

(5.17) 

in (bI. b 2, b 3). 

Thus from (5.16), we get the minimal presentation 

Bb ( 1 2 -2 -1 2 -2 -1) 
:= Jl.,l/ - = Jl. l/Jl. 1/ = 1/ Jl.1I Jl. (5.18) 
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9. Bb At: ADGHJB(Kl - BJHIFC(L) 

v : ABCFEO(M) - OEFIHG(N) 

F.o.F 

COORD. AXES: OE"OE2,OE3 

B- CENTRE: B1 

2 -2 -1 1 
=-=.M ",,u V = 
-;u. ",2,.u.-1",-2 = 1 

o tU-' 

E v 

GRAPH OF F 

Fig. 5.3. The minimally presenting concave fundamental 'tetrahedron' F realizing Bb by 
(5.18) with 4 faces, 6 + 6 edges and 10 vertices 

in a very nice symmetric form. From the paper of E. MOLNAR (1987) the 
surprising concave fundamental 'tetrahedron' is pictured here in Fig . .5.3, 
which geometrically realizes the algebraic presentation (5.18) in the sense 
detailed in (1.18). 

Again, we remark that Bb is a fixed point free space group, thus the 
orbit space If3 IBb represents a non-orientable Euclidean space form. This 
is geometrically realized by any fundamental domain ~Bb (sce Fig. 5.2 or 
5.3), analogously as described at Pb above. 

Asking for the densest ball packing by Bb, we obtain again 6 = 
1r1.JTS ~ 0.7405, the same as at the densest lattice-like packillg. The 
extremal orbit X Bb will be given with the Gramians 

«e;;ej» = G ~ n or «bi;bj» = G ~ n (.5.19) 
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and with a centre X(xel+ye2+1e3 = (x+l)b1+yb2+(l-x)b3)' T_hen 
the ball radius is 1, the packing itself has the self-symmetry group Fm3m. 

6. The Bravais Z-classes 2/mP and 2/mB 

The monoclinic primitive lattice mP with the Gramian (1.11) obviously 
has a 2-fold rotation symmetry 

Thus, we have a maximal (arithmetic) I-class, denoted by 

(1 0 0)(-1 
2/mP: 0 1 0 , 0 

o 0 1 0 
~1 ~),(~1 
o 1 0 

o 
-1 
o 

o ) (1 0 o ,0 1 
-1 0 0 

(6.1 ) 

~ ). (6.2) 
-1 

The lattice mP with Gramian (1.11) does not allow a larger Z-class, in 
general. Thus 2/mP characterizes the monoclinic primitive lattice mP, 
therefore 2/mP is called also a Bravais I-class. 

The geometric crystal class, itself, is a point group 

Go := {I, 2, i, M} =: 2/m, (6.3) 

called also a holohedry, as a maximal Q-class leaving a Bravais lattice in­
variant. 

The same geometric class (6.3) describes also the symmetries of a 
monoclinic single face centred lattice mS := mB. The arithmetic class 
2/mB is expressed in the B-centred basis (bI, b 2 , b 3 ) by formula (3.6) 

o 
-1 
o 

1) (-1 o , 0 
o 0 

This is also said to be a Bravais I-class. 

o 
-1 
o 

o ) (. 0 o , 0 
-1 -1 

o 
1 
o 

-1) 
~ . (6.4) 

The (geometric) Q-class 2/m is also a holohedry for the Bravais lattice 
mB =: mS. Thus 2/m characterizes the monoclinic crystal system 2.m, 
where the 6 Z-classes fall into 3 Q-classes and 2 Bravais flocks (by the 
Bravais lattices mP and mB). 

As our exam·ples have illustrated, we can determine all the space 
groups to any prescribed (arithmetic) I-class, and we can select them by 
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Table 6.1 
The structure of the monoclinic crystal family JI. m is described, based on the 

arithmetic I-classes. It contains 1 crystal system: 2.m; 3 Q-classes; 2 Bravais lattices 
(Hocks); 6 I-classes; and 13 space group classes 

isa 
Arithmetic Bravais 
1'Z-c1ass Z -class 

(8)213/1 

2/mP mP 

2!3 /1 101 02 
10. P21 m 13. P2! b 

03 04 
11.P2,1 m 14.P2,! b 

The monoclinic crystal! fomily 

02 
7. Pb 

Il.m 

a maximal 
(ll-c1ass (H) 2/3 
a holohedry 
describing the 
system 2.m 

01 
5. 82 

is a 
Arithmetic Bravais 
I'Z-class I'Z- class 

(B) 2/3/2 describing 
2/mB=:2/mSthe lattice 

m8=:mS 

01 02 
12821 m 15.821 b 

i'Z-c(OSS 

2/2/2 
02 

9. Bb 

the affine equivalence under formula (2.7). This is a problem for computer 
not detailed here. 

Table 6.1 indicates by our cases, how to organize the structure of space 
group classes for a future data base. We are working on this problem, in 
order to investigate systematically actual questions, indicated in the paper 
and many others, by computer. 

Nowadays, the procedure how to determine all the crystallographic 
groups for any space (In is 'clear'. 

First step: Determine all the maximal irreducible unimodular groups 
leaving invariant an n-dimensional lattice. Arrange these into Q-classes, 
and determine the Bravais I-lasses, up to unimodular I-equivalence. 

Second step: Determine all the maximal reducible unimodular groups 
with the corresponding invariant sublattices of an n-dimensional lattice. 
Form again the possible centerings, Q-classes, Bravais I-classes, again up 
to I-equivalence. 

Third step: Form the possible subgroups of these unimodular groups 
in each Bravais I-class, up to I-equivalence again. Thus, we obtain all the 
arithmetic I-classes as finite unimodular n X n matrix groups. 
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Fourth step: To each arithmetic I-class determine all the vector sys­
tems (group cohomology classes). These bring screw motions, glide reflec­
tions into considerations, where the translational parts are broken lattice 
vectors, as our examples Pb and Bb illustrate. Here the affine conjugacy 
is important again. The so-called Zassenhaus algorithm (H. ZASSENHAUS, 
(1948)) leads to all the non-isomorphic space groups belonging to the given 
arithmetic I-class. In the sense of formula (2.7) we need the 7l.-normalizer 
of the given arithmetic class. This means, if Go a I-class, then 

defines this normalizer. The vector systems (cohomology classes), equiva­
lent under N7!.( Go), determine affine conjugate space groups. 

This procedure has been carried out for n = 2,3,4 as a grandious 
result of a cooperation by H. BROWN et al. (1978). The computer promises 
many further results also in this field of research. 
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