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Abstract 

One of the most important questions in the theory of N-dimensional Euclidean lattices is: 
How many minima can be found in an N-Iattice? As first result G. F. Voronoi proved in 
[1] that this number is not greater than 2N+1 

- 2. On the other hand, for the well-known 
classical extremallattices, this number is not 'enough large', in these lattices there are 
only O(N2) minimal vectors. The first lattices with a lot of minima were constructed by 
E. S. Barnes and G. E. Wall. They proved in [1] that in the dimensions N = 2n there 
exists such an N-Iattice in which the number of minima is SUN) = C, (N~(log2 N+l») = 
c . (2~[(log2N)2+1og2Nl). (The assymptotic formula was given by J.Leech in [3].) The 

above mentioned lattice for dimension N = 23 is the well-known lattice Eg • Using the 
base properties of the Reed-Muller code, in this paper we give the characterization of the 
minima of this lattice and determine the number of minima of the 2n - 2-dimensional 
lattice that is a generalization of the extremal lattice Es. We note that the author proved 
some similar results in the paper [4] but the precise value of the above number was not 
known yet. 
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Some Lattices with a Lot of Minima 

Let el, ... , eN be N independent points in EN. Then the set A of points 
n 

Z = L Xiei, Xl,' .. ,Xn E Z integers 
i=l 

is called a lattice. The lattice A * is a sublattice of A if and only if A * C A. 
The vector m is a minimum of A if for every lattice-vector v E A, 
1 m I~I v I. The number of the minima of A is denoted by seA). Now we 
describe some important lattices with a lot of minima. These lattices are 
extremals and in the lower dimension cases (N ~ 8) they have the most 
minimum vector. 

lSupportcd by Hung. Nat. round.for Sci. H('s('arch (OTKA) No. 1615 (1991). 
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The Lattice AN 

N+l 

AN = {L Xiei I x = (Xl, ... , xN+d E Z N+I 

i=l 

N+l 

LXi = o}. 
i=l 

Minimum vectors: vectors ei- ej (i::j:: j) . Number of minima: 
N(N + 1) . 

The Lattice DN 

N 

DN = {Lxiei I x= (Xl, ... ,XN) E ZN 
i=l 

N 

LXi == 0(2)}. 
i=l 

Minimum vectors: vectors ±ei± ej (i::j:: j). Number of minima: 
2N(N - 1) . 

The Lattice EN (N = 6,7,8) 

8 8 

Es = {Lx;e; I x = (XI, ... ,xs) E Z8 
;=1 

or x E (Z + ~)8 LXi == 0(2)}. 
i=l 

S 

Ei = {l':=x;e; I x = (XI, ... ,xs) E E S 

;=1 

S 

S 

LXi = O}, 
;=1 

i 

E6 = {Lxie; I x = (XI, ... ,xs) E E S 

i=l 
Xl +XS = LXi = O}. 

i=2 

Minimum vectors: 

E8: vectors (±ei±ej) (i::j:: j) 

minima: 240. 

1 8 
and vectors 2" I: (± ei). Number of 

i=l 

E7: vectors ei±ej !(eil+ei2+ ei3+ei4±eis± eis± eh±eis), where 1 ::; 
i,j ::; 8 {il,'" , i8} are a permutation of the numbers {I,··· ,8}. 
Number of minima: 126 . 

E6: vectors ei-ej (2::; i::j:: j ::; 7) and vectors ±~(el+ei2+ ei3+ei4 
- eis -eis -ei7 -es), where {i2, ... , ii} are a permutation of the num­
bers {2,··· ,7} and the vectors ±(el-e8) . Number of minima: 72. 
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2.The Barnes-Wall Construction 

Let V be an n-dimensional vector space over the Galois field GF(2) ; in 
terms of a basis el. ... , en, we may write the elements as a = 2: aiei with 
coordinates ai which are integers taken modulo 2. The additive group of V, 
which we shall also denote by V, is the elementary Abelian group of order 
N = 2n. Subgroups and cosets of dimension r will be denoted gene.rically 
by v;. and Cr, respectively. In N-dimensional Euclidean space E.S.BARNES 
and G. E. WALL (Barnes and Wall) consider integral vectors x = (Xa) with 
coordinates Xa indexed by the N elements a of V. If W is any subset of 
V, [W] will denote the characteristic vector x defined by : 

x = {I if a E W 
a 0 if art. W 

Barnes and Wall denoted by A the sublattices of ZN generated by all vectors 
2[n;rl[Cr ], where Cr runs over all cosets in V. They proved the following 
theorems: 

Theorem 2.1. Let cl, ... ,en be any basis of V. Then a basis of A is given 
by the N vectors 2[";rl[Cr j, where Vr runs through the subgroups of V which 
have a subset of cl, ... ,en as basis. (see [21 T.3.1) 

Theorem 2.2. A is invariant under the following orthogonal transforma­
tions: 
i. the permutation of the coordinates Xa induced by the transformation 
Cl: 1---4 ra + 'Y of V, where r is a non-singular matrix over GF{2} and 'Y is 
any fixed element of V, 
ii. the involution 

if Cl: E W 

if Cl: rt. W 

where W is any fixed subgroup of V of dimensionn - 1. 

Barnes and Wall defined the rank of a point x-:j= 0 of A to be the largest 
r(O :::; r :::; n) for which all coordinates Xa are divisible by 2(fl and proved: 

Theorem 2.3. A point x -:j= 0 of A is a minimal vector if and only if R is 
odd, and for some coset Cn-R of dimension n - R 

(see T.3.2 and (5.2) in [2]) 

if a E Cn-R 

if art. Cn - R 
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Theorem 2.4. For the lattice A the number of minima 

n+l '" (n-R) (2n - 1) ... (2 n-R+1 
- 1) 

seA) = 2 ~ 2 2 Kn,R where Kn,R = (2R _ 1) ... (2 _ 1) . 
R odd 

J .LEECH in [3] determined this sum, he gave the following form: 

where 1 = 4, 7684 ... is a constant. 

Second-Order Reed-Muller Code and the Barnes-Wall Lattices 

A binary code C of length N is a subset of Ff, where Ff is the N­
dimensional vector space over the Galois field GF(2). The Hamming dis­
tance between two vectors 

Ui,Vi E GF(2), to be the number of coordinates where they differ: 

d(u,v) =1 {i : Ui i= Vi} I· 

The minimal distance d of a code is 

d:= min{d(u,v) 1 u,v E C}. 

A code of length N containing M codewords and with minimal distance 
d is said to be an (N, M, d) code. A linear code C is a linear subspace of 
F:t: the set of codewords is closed under vector addition and coordinate­
wise multiplication by elements of Ff. The dimension k is the dimension 
of this subspace, and there are 2k codewords. A linear code of length N, 
dimension k and minimal distance d is said to be an [N, k, d] code. The 
minimal distance of a linear code is the minimal nonzero weight (the num­
ber of the nonzero coordinates) of any codeword. Let Ai(C) denote the 
number of codewords at Hamming distance i from a codeword C E C. The 
numbers {Ai(C)} are called the weight distribution of C with respect to 
c. For linear codes {Ai(C)} is independent of c and will be denoted by 
{Ai}.(See for example [6] or [5].) Assume now that N = 2n. Denote by 
X = {Po, ... ,P2n -I} the set of the points of the n-dimensional Euclidean 
geometry EG(n, 2) over GF(2). Any subset S of the points of EG(n, 2) has 
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associated with it a binary incidence (or characteristic) vector of length N, 
containing l' in the components s E S, and zeros elsewhere. This gives us 
another way of thinking about codewords, namely as (characteristic vectors 
of ) subsets of EG(n, 2). If we fix a coordinate system and the points of 
EG(n, 2) are column-vectors in this system, then this geometry corresponds 
with a binary matrix which has n rows and N columns. For example, in 
the case of n = 3 we have the incidence-matrix: 

Po 
1 
1 
1 

P3 
1 
o 
o 

P5 
o 
1 
o 

P6 
o 
o 
1 

P7 
o 
o 
o 

It is clear that the complements of the rows of this matrix are the charac­
teristic vectors of hyperplanes which pass through the origin, so these are 
subspaces of dimension n - 1. Let's denote by VI, . .. , Vn these subspaces 
and denote by [S] the characteristic vector of the subset S. (At this time 
the corresponding codewords are [VI], ... ,[vn].) Since the coordinatewise 
multiplication of two codewords is also a codeword, for which 

[S] * [G] = [S n GJ 

holds, we get that [Vi] * [VjJ is the characteristic vector of a n - 2-dimen­
sional subspaces. For example in the three dimensional case the rows of this 
matrix are the characteristic vectors of the three 2-dimensional su bspaces 
of Ff {ci' Cj}, where i ::j:. j .The characteristic vectors of the subspaces of 
dimension 1 (or 0, resp.) are the collection of vectors formed by component­
wise multiplying these vectors two at a time (or three at a time, resp.): 

[1000 1000] -. {O, ca} 
[1 0 1 0000 OJ -. {O, CZ} 
[1 1 0 0 0 0 0 0] -. {O, cl} 
[1 0 0 0 0 0 0 0] -. {O} 

In this paper the set of indices of the N -dimensional space EN will corre­
spond with the space EG(n, 2), so we regard it as an algebraic structure. 

The binary rth order Reed-Muller code of length N = 2n (R(r,n)) is 
the linear code generated by the codewords: 

r 

It can be proved that this code is a [2 n
, .2: (7), 2n

-
r

] one, so its minimal 
1=0 

distance is 2n
-
r (see [5],[6]). We use the following theorems: 
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Theorem 3.1.By an invertible linear transformation of the space EG(n, 2), 
arbitrary codewords in the second-order Reed-Muller code can be trans­
formed to one of the following forms: 

a) t [V2i-l] * [V2i], 
i=l 

b) t [V2i-l] * [V2i] + [V], 
i=l 

c) t [V2i-l] * [V2i] + L20'+ 1, 
i=l 

n . 
where the linear part of the third case L20'+1 = 2:: ailV'] is not identi­

i=20'+1 
caily zero, and for (1' (1' :s; [I] holds. 

This theorem can be found in the books [6] and [7]. 

Theorem 3.2. Let Ai be the number of codewords of weight i in R(2,n). 
Then Ai = 0 unlessi = 0, 2n, 2n-1 or 2n-1 ±2n-1

..q for some (1',0 < (1' :s; [I]' 
Furthermore 

Ao = A2n = 1, 

_ 0'(0'+1) (2n - 1)··· (2n-20'+1 - 1) 
A2n-l±2n- 1-" - 2 (40' _ 1) ... (4 - 1) , 

An - 21+(~)+(~) _ '" AI} 
2n - 1 - L..t ' . 

i:;e2n - 1 

We now give the precise characterization of the minima of the lattice 
defined by Barnes and Wall. We prove the following statement: 

Theorem 3.3. Regard the following n - R-dimensional subspace of 
V: Wn-R = V n- R+1 n ... n V n and denote by m such a vector of A whose 
support is the coset Wn-R and the absolute values of its coordinates are 
2[n;1. Let W:_ R be the set of such indices of m where the corresponding 
coordinates are positives. Then the vector m is a minimum vector if and 
only if the vector [W~_Rl is a codeword of the second-order Reed-Muller 

code of length 2n-R which is defined over the subspace Wn-R' 
Before proving this theorem, we have to verify an interesting lemma about 
the incidence vectors of subspaces of the space EG(n,2). 

Lemma 3.1. Let Gi < EG(n,2) i = 1, ... , h be distinct subspaces in 
h 

EG(n,2). Regard the codewords c = 2:: (mod2)[GiJ. 
i=1 
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Then the following equality holds: 

h 

c = 2:[Gd - 2 2: [Gi l ] * [Gi2] + 4 2: [Gil ] * [Gi2] * [Gi3] - ... + 
i=l i1#:i2 i1#:i2;t:i3 

Proof. The above-mentioned equality is an identity if h = 1. Assume 
that the statement is true if the number of the components of the sum 
is less than or equals h. Regard now the following decomposition of the 
codewords c: 

h 

c = 2:mod2[Gd = c' + [Gdmod2. 
i=l 

Since if 0: rt. Gi then 0 = [Gi]~ so we can see that: 

h 

c~ = c~ = (2:[Gj] - 2 2: [Gill * [Gi2l + 4 2: [Gill * [Gi2 l * [Gi3l-
j=l ;1 "';2 ;1 "';2#;3 
;",j ;1,i2#i il ,;2';3"'; 

h 

= (2:[Gi] - 2 2: [Gi1] * [Gi2 ] + 4 2: [Gi1] * [Gi2] * [Gi3] - ... + 
i=l i1 ;t:i2 il ;t:i2;t:i3 

+ (_2)h-I[GI] * ... * [GhJ)~. 

For this reason in this case for the index 0: the statement of the lemma is 
true. This means that if there exists such an index i for which 0: rt. Gi then 
in the index 0: the desired equality holds. Assume now that 0: E n{ Gi I i = 
1, ... , h}. Then the value of the left hand side in this index is: 

h {O if h is even 
(c)" = (Lmod2[Gd)~ = . 

i=1 1 If h is odd. 

At the same time the value of the other side is: 
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Thus, the statement of the lemma in this case holds, too. 

Proof of Theorem 3.3. BARNES and WALL in [2] proved that the number 
of the minima supporting the fixed subspace Wn-R was not greater than the 

1 + (n-R)+ (n-R) number 2 1 2. Let ao, ai, ai,j be elements of GF(2) and denoted 
by Wi = Wn-R n Vi for all index 1 :::; i :::; n - R. Regard now the following 
vector: 

m = 2[l!fll ({ ao[Wn - R ] + L mod2ai[Wi]+ 
l::5i::5n-R 

+ L mod2ai,j[Wi] * [wj]}) - 2[~][Wn-R], 
1~itj~n-R 

where the plus in the bracket means the (mod2) sum of those binary vectors 
which can be found there. It is clear that m is in the lattice A if and 
only if the first member is in A. In this case the vector m satisfies the 
conditions of Theorem (2.3), so it is a minimum one. Since the linear 
combination in the bracket is a codeword of the code R(2, n - R), so the 
number of the distinguished vectors m, which can be stated in the above 
form, is 21+(n~R)+(n;R). This mea~\s that we only have to prove that every 
codeword as an N-dimensional (O-1)-vector (the coordinates which are not 
in W n - R are equal to zero) is in A. We now prove that this binary vector 
is a linear combination with integer coefficients of the lattice vectors with 
support W i

. Note that under a coordinate permutation of EN induced 
by an invertible linear transformation of the space Wn-R the lattice A is 
invariant (see Theorem (2.2)), so the image vector and the original one are 
in the lattice at the same time. By virtue of the Theorem (Dickson) it may 
be assumed that che examined vector is in one of the following forms: 

a) 

b) 

c) 

tIW2i
-

1
] * [W2i], 

i=1 

t [W2i - 1] * [W2i] ;l- [W"- R] 
i=1 
h. . 
"\' [W2t- 1] * [W2!] ;l- L 1 '-' , 2h+. 
i=l 

n-R . 
where the sum L 2h+1 = I: ai[W'] is not identically zero. 

i=2h+1 
The cases of a, and b are easy to see from the Lemma 3.1 because for 

every odd number R the following equality holds [Rt2] = [Rt1]. Hence 
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we get that: 

h h 

2[¥]{~:)W2i-l] * [W2i ](mod2)} = 2: 2[¥1[W2i- 1] * [W2i]_ 
i=l i=l 

h 

- 2: 2· 2[¥1[W2i1 -
1] * [W2i1] * [W2i2 - 1] * [W2i2]+ 

i1 ,i2=1 
i1 ;ti2 

h 

= L 2(¥1[W2i- 1
] * [W2i]_ 

i=l 

h L 2[¥1+1[W2i1 - 1] * [W2i1] * [W2i2-1] * [W2i2] + ... 
i1,i2=1 
i1 ;ti2 

259 

Here every element of the right hand side is in A, so this is true for the left 
hand side, too. 

In the case of c, we have to apply such an affine transformation T 
which does not modify the first part of the sum C, and at the same time 
for which the equality T(L2h+d = [W2h+l] holds. (There exists such a 
transformation, see for example in [8] the formula (16.352).) Regard now 
the following notes: G i = [W2i

-
1

] * [W2i] Gh+l = [W2h+l] and apply the 
Lemma 3.1. It is easy to verify that the statement of the theorem is true 
in this case, too. 

Sublattices of the Barnes-Wall Lattice 

Let H be an arbitrary subgroup of V. Let AH denote the set of those 
vectors of A for which L: XCI! = o. Then AH is a sublattice of A. The 

Cl!EH 
author in [4] proved the following basic theorem: 

Theorem 4.1. Let dimH be the dimension of the subspace H. 
1. If dimH = dimG, where Hand G are subgroups of V, then, the lattices 
All and Aa are congruents. 

2. For every subgroup H of V the minimal value of the sublattice AH is 
equal to the minimal value of the original lattice A. 

In this paragraph let the dimension r of the subgroup H be fixed 
(0 :::; r :::; n). According to the notations of the paper [2J let Nu be the 
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number of minimal vectors of the lattice A with support Cn- R, where Cn-R 
is a cos et of dimension n - R. (It can be seen from the theorem 2.2 that 
this number is the same for all cosets of dimension n - R.) Denote by 
N R k the number of those minima of AH with support Cn - R for which 
di~(Cn-R n H) = k. It is easy to see that NR,k is also independent of the 
choice of the coset Cn-R. From Theorem 3.3 it is clear that this number 
is equal to the number of those codewords of an R(2, n - R) code which 
have 2k- 1 O's and 2k- 1 l's coordinates over a k-dimensional subspace Vk of 
the original vector space V. In [9] the author determined this number and 
proved that: 

[41J 
N R,k = t (2 k - 1) .. , (2 k - 26+2 _ 1)2(n-~+I)-(kf)+e-2g+1 )+1. 

6=1 

In the same paper the following recursive formula was verified: 

Theorem 4.2. If 1 $ k $ n - R holds for the number k, then: 

2k N R,k = (2k - 1) [2(n-~+1 )+1 - N R,k-l] . 

By the help of these formulas the asymptotic one was given in [4J for the 
number AH when H =< {O} >. It was proved that in this lattice the 

number of minima was equal to O(Nt(log2 N+l)). In this paper we shall 
prove a similar result. 

Theorem 4.3. Regard the lattice AH n Ac , where H, G are the subgroups 
V,1-1 and < {O} >, respectively. Then for the number of minima of this 
lattice the following inequality holds: 

where the constant c* is independent of the dimension N. 
Proof. The precise value of the number of minima of this lattice was 
determined in [4], this is the following: 

s(AVn_1 ,<{O}» = L {(2
R 

- l)N R,n_R_ 12
R 

Kn-l.R+ 
R odd 

+(2R- 1NR + (2 R- 1 
- l)NR.n- R)Kn-l.R-I}' 

Substitute the value k = n - R into the recursion formula (see Theorem 
4.2) and arrange the equality into the following form: 

(2n- R _ l)NR,n-R-l = [(2n- R _1)2(n-~+I)+1 _ 2n-RNR.n_R] . 



Then we get: 
s(AYn_1 ,<{O}» = 
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However, from the definition of the number K n - 1,R-1 it is clear that: 

so we have that: 
s(Ayn_1,<{O}» = 

" { R [ (n-R+l )+1 n R n R ] = ~ 2 2 2 (2 - -1) - 2 - NR,n-R Kn-I,R-I+ 
R odd 

261 

+ (2 R- 1 N R + (2 R- 1 
- 1)NR,n-R)Kn- 1,R-1} = 

= L {(2n-2R+2R-l)NR+(-2n+2R-1-1)NR,n_R}Kn_l,R_l. 
R odd 

Here we use the equality: N R = 2(n-~+1 )+1. If we take into consideration 
the equality 

too, we get that: 

= _1_ " {(2n _ 2R-1) [1 _ NR,n-R] _ NR,n-R }(2R -l)N K 
2n - 1 ~ N N R n,R· 

R odd R R 
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If we can give a good upper bound for the number N ~~-R, we get a lower 
one for the number of the minima. Take now the sum-form of the number 
N R,n-R. This is the following: 

[
n-R±l ] 

2 (n-R-?6±1) 
N R,n-R = L (2n- R - 1)··· (2n-R-2H2 - 1)2 i +1. 

0=1 

(n-R±I)+l 
Since N R = 2 2 , we have that: 

NRn-R , -
[ n-~+1 ] 

( 1) ( 1) 1 1-- ... 1-L 2n-R 2n-R-20+2 2 n-R-2H 1 =: Ln-R. 
NR -

0=1 

It is easy to verify the following recursion formula for the number Ln-R: 

Ln-R = (1- 2;-R) [2n:R-1 + (1- 2n:R-1) L n-R-2]' 

We prove by induction with respect to the number n - R that the inequality 
holds: 

2n -R+2 - 1 
Ln-R ~ ;!2n-R+2 _ l' 

2 

If n- R is equal to 1 or 2, then the above number Ln-R is ~ or 1, respectively, 
so the statement is true. Assume now that 

Then 

Ln-R = (1- 2n~R)[2n-~l-1 + (1- 2n:R_l)Ln-R-2] ~ 
1 1 1 2n

-
R - 1 

~ (1 - 2n- ll ) [2 T1- U-1 + (1 - 2n-U-1) 12n- ll _ 1] = 
2 

2Tl
-

R _ 1 ~ 2n
-
fl - 1 + (2n

-
U- 1 - 1 )(2n - R - 1) 

= 2n - U [ 2n - Ji- 1 ( i 2n - U - 1) ] = 
2n- ll _ 1 2n- ll+2 - 1 = < -;:------
~ 2n - 1l - 1 ~ 2n - Il+2 - 1 ' 
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so the inequality holds. Here we used the trivial inequality : 

2n -R _ 1 2n- R+2 - 1 
3 < 3 • 
22n-R - 1 - 22n-R+2 - 1 

Although the limit of the above sequence is i for this reason we have the 
same upper bound for the number Ln-R , too. So 

sCAVn_1,<{O}» = 

= 1 '\;" {C2n _ 2R- 1)[1 _ NR,n-R j _ NR,n-R }C2R _ l)N K > 
2n _ 1 L..,; N N R n,R_ 

R~d R R 

> _1_ '\;" [2n - 2
R

-
1 

- 2] (2 R _ l)N K = 
- 2n _ 1 L..,; 3 R n,R 

R odd 

271
-
1 

- 2 R * 
= 3(2n _ 1) L (2 - l)N RKn,R 2: c s(A<{o}>)' 

R odd 

where the non-zero constant c* is equal to inf {:~2~2_-1) n 2: 3}. So we 
proved the theorem. 

We remark that the statement of Theorem 4.3 means that the N = 
(2n - 2)-dimensional sublattice A\'n_l ,<{O}> of the Barnes-Walllattice A has 
at least O(2H(Jog2N)2+log2Nl) minima. 
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