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Abstract 

We are interested in the maximal mean width of simplices in Ed having edge-length at 
most one. Probably the maximum is provided by the regular simplex with edge-length 
one. We prove it for d ::; !S and support this conjecture with some additional arguments. 
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Intro d uction 

Let C be a convex, compact set in Ed where we always assume that d ~ 2. 
For a unit vector u, define ~(C, u) as the length of the orthogonal projection 
of C onto a line parallel to u; i.e. the width of C in the direction of u. 
Moreover, denote by Bd the unit ball in Ed centered at the origin, by Sd-I 

the boundary of Bd, by "'d the volume of Bd and by Wd-l the surface-area 
of Sd-I. Then the mean width of C is 

M(C) = _1_ J ~(C, u)du. 
Wd-I 

Sd-l 

Observe that M(C) is strictly monotonic, continuous and (positively) lin
ear. It is useful to consider a renormalization of M( C) which was intro
d uced in [5]. The first intrinsic volume VI (C) of C is defined as 

VI (C) = d"'d . M(C). 
2"'d-1 

This has the additional property that VI (C) does not depend on the di
mension of the space containing C. 

Assume that C is ad-dimensional polytope and denote by E the set 
of edges of C. Let p be any point of the relative interior of the edge e of C 
and 1< (p) be the set of point x in Er! so that the closest point of C to x is 
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p. Then K (p) is a polyhedral convex cone with vertex p, and for different 
choices of p from the relative interior of e, the resulted cones are congruent. 
Thus, we may define the external angle at e as 

( ) 
_ V(K(p) n (p + Bd)) 

Q e - V(Bd) 

As the length of the edge e is Vi (e), the first intrinsic volume of C is (see [5]) 

e--

Denote by Td the regular simplex with edge-length one and consider the 
family of simplices having edge-length at most one. Here we search for the 
simplex with the maximal mean width in this family, or in other words, 
the one with maximal first intrinsic volume. Thus, consider for n ~ 2 the 
family 

For m < d, we assume that Em, a.1d hence also F:, is embedded into Ed. 
Observe that Td E Fj+1' 

Conjecture 1. Let d ~ 2 and C E FJ+l' Then VI (C) :5 Vl (Td
), with 

equality if and only if C = Td. 
As in E2 the first intrinsic volume is half of the perimeter, the con

jecture readily holds for d = 2. This paper proves the following results 
concerning the conjecture: 

Theorem 2. Let P E Fj+l be so that Vl(P) = max{Vl(C) ICE Fj+l}' 
Then 

i) P = Td if dim P ~ d - 1, 
ii) P = Td if d = 3,4,5 and 

iii) dimP > 15ln d if d is large. 

The statements i), ii) and iii) are contained, respectively, in Theo
rem 7, Theorem 8 and Proposition 9. 

Some General Observations 

First we consider the general properties of F~ (see Lemma 3) and later the 
case n = d + 1 for any d (see Theorem 7). 
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Lemma 3. Let n ~ 3 and Pn E :F~ be so that· VI (Pn) = 
max{VI(C) ICE :F~}. 
Then 

i) dim Pn ~ 2 and Pn has n vertices, 
ii) VI (Pn) < VI (Pn+d, 

iii) Vi (Pn ) < ! VI (Bd)and 

iv) limn-- VI(Pn)=iVl(Bd). 

Proof. If Pn is a segment, then Vi (Pn) ~ 1, and hence dimPn ~ 2. 
Let Q be a poly tape having at most one diameter and at least two 

dimension and Y be a point of the relative boundary of Q different from the 
vertices. Then d(y, x) < 1 for any x E Q, and hence there exists a point y
outside of Q so that the diameter of Q- =conv( Q U {y -}) is still at most one. 
This property yields i) and ii) by the strict monotony of the first intrinsic 
volume. 

Finally, iii) follows as the first intrinsic volume is proportional to the 
mean width, and iv) holds because the unit ball can be approximated with 
inscribed polytopes. 

Let dim C ~ d - 1 for C = conv{xo, ... ,Xd}, H=aff{xl, ... ,Xd} and 
9 =aff{x2, ... ,Xd} have dimension d - 2. In addition, assume that 9 does 
not contain xo and Xl and if C CH, then 9 does not separate Xo and 
Xl. Then we call 9 as an axis of C. Denote by H+ the open halfspace of 
Ed determined by H and not containing xo. By rotating Xl away from xo 
we mean a rotation of Xl around 9 into H+. Observe that this rotation 
moves Xl farther from xo. The following lemma has a key role in the future 
considerations. 

Lemma 4. Let C =conv{xo, .. . ,Xd} have dimension at least d - 1 and 
9 = aff{x2, ... ,Xd} be an axis of C. Then rotating Xl away from Xo 
strictly increases Vi (C). 

Proof. Denote by Yl the new position of Xl, by H the hyperplane per
pendicularly bisecting the segment conv{ Xl, yd, and let H+ be the half
space containing Xl. Observe that 9 C H, and that Xo E intH+ by 
d(Xl' xo) < d(Yl' xo). 

For any X E E d
, let r,o(x) be the image of X by the reflection through 

H and let Yo = <p(xo). The sets 

C-= conv{yo, Yl, X2, .. · ,Xd}, 

M = conv{xO,YI,X2, ... ,Xd} 

and 

M-=conv{YO,xl,X2, ... ,Xd} 
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satisfy C-= ep(C) and M-= ep(M), and the lemma states that Vl(C) < 
Vl(M). 

By the linearity of the intrinsic volumes, Vi (M) = VI (Mo) and 
Vl(C) = VI (Co) for Mo = !(M + M-) and Co =ztc + C-). We prove that 
Co is strictly contained in Mo, which in turn yields that VI (C) < VI (M). 

The points Uo = !(xo + xI), Vo = i(yO + Yl), Ul = !(xo + Yl) and 
VI = !(YO + Xl) satisfy Vi = ep(Ui), i = 0,1. These points occur in the sets 

and 

We note that Co = convO"c and Mo = convO"M, and that O"M\O"C = {uo, vo} 
and O"C\O"M = {Ul' VI}. 

As Yi = ep(Xi) and H separates Yl from Xo and Xl, we have 
U 1 E conv{ Uo, vo}, and similarly VI E conv{ Uo, vo}. These yield Co C Mo 
since Ul and VI are the only points in O"C\O"M. 

In order to establish the strict inclusion, assume that H contains the 
origin and let w be the unit normal vector to H pointing into H+. Define 
fJ, as 

fJ, = max{ < w, Xo >, < w, Xl >} = max{ < w, z > Iz E C}. 

Any Zo E Co can be written in the form Zo = !(z + z-) for some z E C and 

z-E C- .Thus < w, z->~ ° and < w, z >~ fJ, yield < w, Zo >~ ! fJ,. On the 
other hand, as < w, Xo > and < w, Xl > are positive and one of them is fJ" 
we have < w, Uo > > ~ fJ" which in turn yields that Uo E Mo but Uo rt Co. 
Therefore Co is strictly contained in Mo, and so VI (C) < VI (M). 

Remark: Note that VI (Td
) is a local maximum on ;:1+1 by Lemma 4. 

Let 0" be a finite subset of Ed containing at least d + 1 points. The 
points of 0" are said to be in general position if no d+ 1 of them are contained 
in a hyperplane. In other words, if Xo, . .. ,Xd EO" and coefficients ao, ... ,ad 
satisfy 

ao . Xo + ... + ad . xd = ° and ao + ... + ad = 0, 

then ao = ... = ad = 0. Now we modify slightly Radon's classical theorem 
(see [4]). 

Lemma 5. Let Xo, . .. ,Xd+1 be points of Er! in general position. Then the 
points can be renumbered so that for certain m, ° ~ m ~ d, the intersection 
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of conv{xo, ... , Xm} and conv{xm+l, ... , xd+d is a unique point. More
over, for any pair of indices i,j with 0 ~ i ~ m and m + 1 ~ j ~ d + 1, 
the convex hull of the points Xk different from Xi and Xj is a facet of 

C = conv{xo, ... , xd+d. 

Proof. For any y = (yl, ... , yd) E Ed let y- = (yl, ... , yd, 1) E Ed+l. The 

points xi), . .. , Xd+l are dependent in E d+1
, and hence there exist coeffi-

cients 0:0, ... ,O:d+l so that not all of them are zero, 

0:0 . Xo + ... + O:d+l . Xd+l = 0 and 0:0 + ... + O:d+l = O. (1) 

Since xo, . .. , xd+l are in general position in Ed, any d+ lout of the points 
xi), ... , xd+l are independent in Ed+l. This yields that none of the o:;'s is 
zero and any other set of coefficients satisfying (1) is in the form 
{A . 0:0, ... , A . O:d+l} for some real number A. We may assume that 
0:0, ... ,O:m are positive and O:m+l, ... ,O:d+1 are negative for certain m, 
o ~ m ~ d. The first statement follows from the fact that the point 

0:0 . Xo + ... + O:m . Xm 

0:0 + ... + O:m 

is contained in both conv{ xo, ... ,xm} and conv{ Xm+1, ... , Xd+1}' This is 
the only point of the intersection because of the uniqueness condition on 
0:0,··. ,O:d+1' 

Now assume that aff{xI,"" Xd} intersects conv{xo, Xd+l}' Then 

where /30 and /3d+1 are non-negative, /30 + /3d+1 = 1 and 2:1=1 /3i = 1. The 
uniqueness condition on 0:0, ... ,O:d+l yields that 0:0 and O:d+1 have the 
same sign. This is absurd, hence, conv{ Xl, ... , Xd} is a facet of C (see [4]). 

Note that if K is a convex body having at most one diameter then by 
Jung's theorem (see e.g. [2]), 

(2) 

holds for the circumradius R(K) of K. 

Lemma 6 Let C = conv{xo, ... ,xd+dbe a d-polytope with d+2 vertices 
so that d(x;,xj) ~ 1 for any i,j. Then there exist two vertices of C, say Xo 
and Xl, so that d(XO,X1) < 1 and conv {X2, ... ,Xd+l} is a facet of C. 
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Proof. First assume that the points xo, ... ,Xd+1 are in general position 
and that, contrary to our claim, there are no suitable pairs of vertices 
of C. By Lemma 5, we may assume that for certain index m, M = 
conv{xo, ... ,Xm} and N = conv{xm+I, ... , xd+d intersect in a unique 
point y. Here 1 ~ m :s; d - 1 because each point out of xo, . .. ,Xd+1 is a 
vertex of C. The indirect assumption and the second statement of Lemma 5 
yield that d(xj, Xj) = 1 for i = 0, ... ,m and j = m + 1, ... ,d + 1. Thus, 
d(y, xo) = R(M), d(y, Xd+l) = R(N) and aff M and aff N are orthogonal to 
each other. We deduce by (2) that d(y, xo) and d(y, xd+d are less than -/2, 
hence, d(xo, xd+d < 1 in the triangle conv{xo, y, Xd+1}' This contradiction 
proves the lemma when the points xo, ... ,Xd+1 are in general position. 

For the general case we proceed by induction on d. If d = 2, then 
C is a quadrilateral, and hence xo, ... ,X3 are in general position. Let 
d ~ 3 and xo, ... ,Xd+l be not in general position. Then we may as-
sume that Xo, ... ,Xd span E d

-
I , and by induction that d( xo, Xl) < 1 and 

conv{ X2, . .. ,Xd} is a facet of conv{xo, ... ,Xd} in E d
-

I
. Now dim C = d 

yields that xd+ I is not contained in E d
-

1
, and hence, conv{ X2, ... ,Xd+ I} 

is a facet of C. 

Theorem 1 Let PE ;:j+1 be so that V1(P) = max{VI(C) ICE ;:j+I}' If 
dimP ~ d - 1, then P = Td. 

Proof. Assume that P is not congruent to Td. Lemma 3 yields that P 
has d + 1 vertices, and by Lemma 6 we may assume that d(xo, Xl) < 1 
and g = aff{x2, ... ,Xd+I} is an axis of P. We conclude by Lemma 4 that 
VI (P) is not a local minimum on ;:j+ I' and this contradiction proves the 
theorem. 

Low and Large Dimensions 

Simple calculations show that the external angle of T3 at an edge is -y = 
arccos( - k) /21T", and hence, 

VI (T3
) = 6 . 1 . -y = 1.8245. 

Turning to T 4 , let p be contained in the relative interior of the edge e of 
rl and K(p) be the corresponding three-dimensional cone. Then K(p) has 
three faces, and the angle of any two of these faces is -y. Let tl be the 
spherical triangle on S2 whose each angle is -y. As the surface-area of tl 
and S2 are 3 -y - 1T" and 41T", respectively, we deduce that 

4 3-Y-1T" 
V1 (T ) = 10· aCe) = 10· = 2.0630. 

41T" 
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Theorem 8. Let d = 3,4,5 and P E :F1+1 be so that 
Vl(P) = max{Vl(C) ICE :F1+1}' Then P = T d

• 

Proof. If d = 3, then P = Td by i) of Lemma 3 and by Theorem 7. Let 
d = 4,5 and observe that 

This yields that dimP ~ 4 by Lemma 3, and hence, P = Td by Theorem 7. 
In the proof of Proposition 9, we need the estimate (cf) [1] 

Proposition 9. Let d be large and P E :F1+1 be so that 
Vl(P) = max{Vl(C) ICE :F1+J. Then dimP > 151nd. 

(3) 

Proof. According to [3], we have Vi CTd) '" 2)21rv'ln d as d tends to 

infinity. Assume that d is large enough to ensure VI CTd) > "T" )21rv'ln d. 

Let m ~ 15lnd and C E :F:1+1' Then Vi CC) < ~Vl(Bm) by Lemma 3, 
and (3) yields that 
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