
PERIODICA POLYTECHNICA SER. ME CH. ENG. VOL. 36, NOS. 3-4, PP. 299-316 (1992)

DATA STRUCTURES AND PROCEDURES
FOR A POLYHEDRON ALGORITHM l

1. PROK

Department of Geometry
Faculty of Mechanical Engineering
Technical University of Budapest

Received: November 16, 1992

Abstract

In this paper we describe the data structures and the procedures of a program, which is
based on the algorithms of [5,6J. Knowing the incidence structure of a polyhedron, the
program finds all the essentially different facet pairings. The transformations, pairing the
facets generate a space group, for which the polyhedron is a fundamental domain. The
program also creates the defining relations of the group. Thus, we obtain discrete groups
of certain combinatorial spaces. ,\Ve have still to examine which groups can be realised in
spaces of constant curvature (or in other simply connected spaces). Finally, we mention
some results: Examining the 4-simplex, our program disproves Zhuk's conjecture concern­
ing the number of essentially different facet pairings of d-simplices [11]. The classification
of 3-simplex tilings has also been completed [7]. We have found the fundamental tilings of
the Euclidean space with marked cubes and the corresponding crystalIographic groups [8J.

Introduction

We start from a d-dimensional polyhedron P given by its finite flag struc­
ture F. In Section 1 we define the basic concepts connecting with F, describe
its data structure and a basic procedure on it.

In Section 2 we define the isomorphisms (combinatorial isometries) of
the (d-I)-facets, the automorphisms (combinatorial symmetries) of a facet,
and the isomorphism classes of the facets. In order to reduce our discussion,
we make an assumption: the facets of P form only one isomorphism class.
This assumption can be made without loss of generality, because the classes
must be treated independently in the same manner. Then we describe the
data structure of a class and describe the procedure that creates it from F.

Considering a space group for which P is a fundamental domain, it
can be generated by its transformations that map P onto the neighbouring
polyhedron along facets. These transformations and their inverses deter­
mine a pairing of the facets of P identifying the facets in pairs. Conversely,

I Su ppol'ted by H u nga.l'ia 11 N at. Foulld .for Sri. Research OTKA No. 1615 (1991).

300 1. PROK

if we give a system of identifying generators, it determines a group Q. Let
pg denote the Q-images of P. Then Q acts simply transitively on pg,
and the factor space pg IQ (orbit space) is the same as P equipped with
identifications (Section 5).

In Section 3 we introduce the facet-mappings as certain permutations
of the flags. Their group contains the automorphisms of P as a subgroup
(Section 4). Moreover, the involutive facet-mappings determine the systems
of identifying generators. Thus, the equivalence of the generator systems
at the automorphism group can be checked easily. The data structure of
a facet-mapping is much more concise than a permutation of the flags. In
Section 4 we describe the procedure that creates the automorphisms of P
as facet-mappings. Section 5 contains a procedure for finding all the non­
equivalent involutive facet-mappings (or rather all the essentially different
generator systems.)

Finally, in Section 6 we describe the procedure, which carries out the
Poincare algorithm starting from an involutive facet- mapping (a genera­
tor system) to determine the defining relations of the generated group Q.
Finding the transformations surrounding an edge, we obtain a cycle trans­
formation. These will define relations with arbitrary natural exponents.
The exponent determines the order of the 'rotation' subgroup of the edge
stabilizer. In Section 7 we mention some results.

In order to reduce the lengtr of our discussion, we make some agree­
ments for our procedures.

• If a variable has already been declared, then we think the pointer that
points to it. For example, the flag f means the pointer that points to
f whenever the flag structure has already been created. In our figures
this pointer is denoted by r f.

• Referring to a chain of data, we think the pointer which points to the
first element of the chain. We can obtain an element elj of a chain Cl

as a result of (linear) searching. Moreover, going parallel in another
chain C2 we can obtain its element e2i corresponding to qj. In our
procedures we do not detail these searchings.

• A vector is declared as an array indexed from ° to (d - 1).

1. The Flag Structure of a Polyhedron
(Isomorphisms of Face Systems)

Let a d-dimensional polyhedron P be given. Let F(i) denote the set of the
i-faces (i = 0,1, ... , (d-l)). We use the notations V, E and F for the sets
F(O), F(d-2) and F(d-l). Moreover, we call their elements vertices, edges
and facets, respectively.

DATA STRUCTURES FOR A POLYHEDRON ALGORITHM 301

Definition 1.1. We define a flag of P as an ordered d-tuple of incident
O-face, I-face, ... , (d - I)-face. So the flag structure F of P is a non­
empty subset of the direct product F(O) X F(1) x ... x F(d-I). Let f =
(f (O) f(I) fed-I)) b fl d 1 t 'd't" . f , , ... , e a ag an e us conSl er 1 s ~o-, ~I-, ... , t m - ace
components where io, iI, ... ,im is a subsequence in 0,1, ... ,(d - 1) (it may
b t) W th t (f (io) f(il) f(im)) . (.. .) f e emp y . e say a , , ... , IS an ~o, ~I, ... ,~m ace
system (or subflag) of P. •

Definition 1.2. Let a face system (fUo) , f(id, ... ,f(irn)) be given. The
flags f = (... , f(io), . .. ,f(id, ... , ... ,f(im), .. .) that contain the faces of
the system in their components form the set F(f(iO),f(il), ... ,f(im)) C F, which

is called the flags of the face system. In particular, if v E V = F(O),

e E E = F(d-2) and f E F = F(d-I), then F v, Fe and F f are the set of the
flags of the vertex v, the edge e and the facet f, respectively. (The set F 0

contains the flags of the empty system: F 0 = F.) •

Definition 1.3. The flag structure of the polyhedron P is strictly connected
iff the following two properties are fulfilled.

1. Each flag in F has exactly one i-adjacent flag for every i. Two flags
are i-adjacent iff their i-face components are different but their other
components coincide.

2. If g and h are different flags in F, there exists a finite sequence of
flags

g = fl' f2, ... , fn - 1, fn = h

so that each fj (1 :s; j :s; n) has the common face components of g and
h (in other words each element of the sequence is a flag of the face
system given by the common components of g and h) furthermore
fHI is i-adjacent to fk (1 :s; k < n) for certain i. 0

In the following we assume that the flag structure of P is strictly
connected.
Definition 1.4. Let (g(io),g(itl, ... ,g(im)) and (h(io),h(il), ... ,h(im)) be
(io, il, ... , i m) face systems and let G and H denote the flags of these
systems, respectively. Furthermore, let jo, 11, ... ,jn be the complement
sequence of io, il, ... , i m . We say that these systems are isomorphic if
there exists a bijective map 1/J : G - H preserving the jo-, 11-, ... , jn­
adjacencies. We call1/J an isomorphism between these systems. Moreover,
the bijective map w : G --4 G is an automorphism of the face system
(g(io), gUI), ... , gUm)) if w preserves the jo-, 11 -, ... , jn-adjacencies. Since
P is strictly connected, 1/J (and w) is given by arbitrary corresponding flags
(by any flag and its image). •

Thus, we can speak about the isomorphism classes of the (io, il,.' . ,i rn)

face systems and the automorphism group of a face system. The main

302 I. PROK

things will be the isomorphism classes of facets and the automorphism
group of the whole polyhedron.

Remember that the polyhedron P is given by its flag structure. Thus
the input data of our program are the flags of P. We create the following
two data structures of them. First we give the i-faces of the polyhedron.

Data 1.1. An i-face is a record, which contains two fields. The first field
is the mark of the i-face and the second one is a pointer to the mark of
the next i-face to form a chain of i-faces. Moreover, we need a head for
the i-face chains. It is a vector of the pointers, which point to the chain of
i-faces (i 0,1, ... ,(d - 1)). (Fig. 1.1) •

O-faces

I-faces

(d - I)-faces

Fig. 1.1. The data structure of the faces

Looking for the i-adjacencies to each flag we prepare the structure of
the flags.

Data 1.2. A flag is a record composed of three fields. The first field is
a vector of pointers. Its i-th pointer points to the i-face of the flag. The
second field is also a pointer vector. Its i-th component points to the i­
adjacent of the flag. The third field is a pointer to form a chain of the flags.
(Fig. 1.2) •

The flag sequences and the vector sequences play important roles in
our discussion. Therefore we describe their structure.

Data 1.3. An element of a flag sequence (flag chain) is a record consisting
of two fields. The first one is a pointer that points to the flag (Data 3.2),
and the second one is also a pointer to form the chain of the flag sequence.
(Fig. 1.3) ..
Data 1.4. An element of a vector sequence (vector chain) is a record with
two fields. The first one is a vector of integer numbers, and the second one
is a pointer to form a chain of the vector sequence. (Fig.l.3) •

Procedure 1.1. There are two input data of this procedure. The first
one is a flag fo (or rather its pointer), and the second one is a subsequence

DATA STRUCTURES FOR A POLYHEDRON ALGORITHM 303

fa

1

Fig. 1.2. The data structure of the flags

Fig. 1.3. The data structure of the flag sequence and a vector sequence

io, i 1, ... , im from 0, 1, ... , (d -1) described by a vector with 'true' Boolean
values in its io-th, il-th, ... , im-th components and 'false' values in the
other components. The face components f (io), f (i1), ••• , f (irn) of fo form a
face system in P. The output data will be a complete flag sequence of the
system, and a vector sequence characterizing the incidence structure of the
system.

The procedure works according to the following recursive algorithm.
Let io, i1, ... ,in be the complement sequence of io, i 1, ... , im with respect
to 0,1, ... , (d - 1). Let the first element of the flag sequence be fo, and the
first vector in the vector sequence be the zero vector O.

If the subsequence fo, f1, ... ,fs has already been given, then we get
fs+l in the following manner. Starting with fs, we go back in the subse­
quence. Let ft denote the flag next in turn. We examine whether the io-,
iI-, ... , in-adjacent flags ~ja),ft(jd, ... ,ft(jn) offt have already occurred
in the subsequence. If ft (jd is the first flag, which has not occurred yet,
in the above order, then fs+1 = ft (jl). If t = 0 and there is no suitable
adjacent flag of fo, then the last element of the flag sequence is f s •

304 I. PROK

If the vector sequence Vo, VI, ... , Vs has already been done and we
have already found the new flag f8 +1, we define the components of the

vector Vs+1 in the following way. We consider the i-face component f;21 of
fS+l and we examine whether it occurs as an i-face component of any flag
ft (i = 0,1, ... , (d - 1); t = 0,1, ... , s). If so, then let the i-th component
V~+l of Vs+1 be equal to vL else let V~+l = max(v&, vL ... v!) + 1. •

This procedure ends because P is strictly connected (Def.1.3). More­
over, the following theorem holds (its proof can be found in [5]) ..

Theorem 1.1. LetgCio),g(id, ... ,g(im) and h(io),h(id, ... ,h(im) be
(io, il, ... , i m) face systems, moreover, the set of their flags be G and H,
respectively. Let go E G and ho E H be arbitrary flags. Using Proc.1.1 we
obtain the flag sequences go, gl, ... ,gs and ho, hI, ... , hs, furthermore, the
vector sequences Xo, Xl, ... ,Xs and Yo, Y l' ... , Y s. If the vector sequences Xt

and Yt are identical, then the face systems g(ik) and h(ik) are isomorphic,

and an isomorphism between their flags is 1/; : G -- H where gt = ht
(t = O,l, ... ,s). •

We remark that Proc.1.1 is suitable to check the second property of
Def.1.3. Namely, if g and h are different flags with common io-, il-, ... , i m -

face components, starting with g and with the subsequence io, il, ... , im ,

Proc.1.1 yields the flag sequence fo, fl, ... ,fs, where fo = g (and yields a
vector sequence). The flag structure of P is not strictly connected iff there
is a pair g, h of the flags, for which the above flag sequence (ft) does not
contain h. (We have assumed that the first property of Def.1.3 is fulfilled.)

2. Isomorphism Class of Facets

By the general Def.1.4 we particularly define the isomorphism of two facets
of the polyhedron.

Definition 2.1. Let G and H denote the flags of the facets 9 and h,
respectively. We say that the facets 9 and h are isomorphic iff there is a
bijective map cp : G -- H preserving the 0-, 1-, ... , (d - 2)-adjacencies
(cp is an isomorphism between the facets). The isomorphic facets form an
isomorphism class of the facets. Moreover, the bijective map /3 : G -+ G is
an automorphism of 9 iff /3 preserves the 0-, 1-, ... , (d - 2)-adjacencies .•

Referring to the Introduction we assume that the facets of P form
only one isomorphism class denoted by c.

Let fo, fl, ... , fr and Fo, Fl, ... , F r denote the facets belonging to c,
and their flags, respectively. Thus, there are so-called indicating isomor­
phisms CPi: F o -+ Fi (i E {O,l, ... ,r}). Moreover, let B = {/3o,/3l, ... ,/3s}

DATA STRUCTURES FOR A POLYHEDRON ALGORITHM 305

(where f30 = 1 is the identity element) be the automorphism group of 10
{f3j : Fo -- Fo where j E {a, 1, ... , s}).

Let 'Pij : F i -- F j be any isomorphism between the facets !i and Ij,

and let us consider the automorphism f31 = 'Pi'Pij'Pjl (f31 : Fo -- Fi -- Fj -­
Fo) of 10. Thus, CPij = cpi! f3ICPj. It means that an arbitrary isomorphism
CPij between two facets of c can be described by the indicating isomorphisms
CPi, 'Pj and an automorphism f31 from B. Especially, if f3 : Fk -- Fk an
arbitrary automorphism of the facet Ik. there exists an automorphism f3j E
B for which f3 = CP"k 1f3jCPk.

Thus, for the data structure of c we have to describe the indicating
isomorphisms and the automorphism group of a distinguished facet in c.
We will fix a flag sequence of this facet. Then we will create the flag
sequences of the other facets in c. These sequences will be the indicating
isomorphisms if the k-th element of the fixed sequence is mapped to the
k-th element of the sequence of an arbitrary facet by an isomorphism for
each index k. The automorphisms will be suitable permutations of the
fixed sequence, similarly, and we will obtain the automorphism group of
the distinguished facet as a permutation group.
Data 2.1. An isomorphism is a record consisting of two fields. The first
one is a pointer to form a chain of the isomorphisms, and the second one
is also a pointer that points to the flag sequence. The data structure of an
automorphism is identical with an isomorphism. (Fig.2.1) •

Data 2.2. An isomorphism class is a record consisting of three fields. The
first one is a pointer to form a chain of the classes. (This chain contains
only the element c now.) The second one is a pointer that points to the
chain of the automorphisms. The third one is also a pointer that points
to the chain of the indicating isomorphisms. (The first automorphism and
the first isomorphism of the chains have identical flag sequences of the
distinguished facet.) (Fig.2.1) •

Using Proc.1.1 in Proc.2.1-2.2 we assume that its input subsequence
is {d - I}, which contains only one element.
Procedure 2.1. The input data are a flag sequence (ft) of a facet I with
the corresponding vector sequence (ut) created by Proc.1.1, and a facet g.
The output is a chain of the isomorphisms (Data 2.1) between I and g.
The isomorphism cP is given by its flag sequence (grpt), where fi 1-+ grpi for
each index i. The chain is empty iff I and 9 are not isomorphic.

Starting from a flag go of 9 Proc.1.1 creates the flag sequence (gt) and
a vector sequence. The facets I and 9 are not isomorphic, if the lengths of
(ft) and (gt) are not identical, trivially, the procedure ends. (If d ::; 3, we.
can speak iff .)

306 I. PROK

!
\ r \\ \\ .\ an isomorphism class c (U, s, r are determined by c)

!

The automorphisms of the distinguished facet in c

~m--m---.···~m

~ITf'"ll "t---Irrull"t--- p ~lrr'"II·1

1
rn----.ITf,oll j---.ITf.111 j---. ... ---->ITf,ull·1

The indicating isomorphisms of c

1
[E----+1Troll j---.ITr111 j---. ···-m

Fig. 2.1. Isomorphism classes

/30 = 1

'Po (0)

'Pr (r)

DATA STRUCTURES FOR A POLYHEDRON ALGORITHM 307

We consider each element gx in turn in (gt). Starting from gxo = gx
Proc.1.1 creates the flag sequence (gxt) and the vector sequence (Vt). If
(ut) and (vt) are identical, we make an isomorphism from (gxt) and attach
it to the existing ones (Theorem 1.1). (If d :::; 3, then each (gxt) gives an
isomorphism.) •

Procedure 2.2 This procedure creates the isomorphism class c.
We choose a facet f as the distinguished facet of c. Let fo denote a

flag of f. Starting from fo Proc.1.1 creates the flag sequence (ft) and the
vector sequence (Ut).

Starting from (ft), (Ut), f, Proc.2.1 creates a chain of the automor­
phisms of f (Data 2.2). The flag sequence of the first (the identity) auto­
morphism is (ft).

The flag sequence of the first isomorphism is (ft), too. We consider
each facet 9 =1= f in turn. Starting from (ft), (Vt), g, Proc.2.1 creates
the isomorphisms between f and g. We choose such an isomorphism, and
attach it to the other one (Data 2.2).

Having constructed c, we fix their ordering. It

If there is a facet h that is not isomorphic with fj then there are
several isomorphism classes. Starting from h instead of f, and examining
the remaining facets, we obtain a new class with the distinguished facet h,
similarly to c. Then we fix the ordering of the classes, too.

Now we fix the following notations. Let f be the distinguished facet,
9 and h be arbitrary facets of c. Their flags are F, G, H, respectively. The
indicating isomorphisms and their flag sequences denoted by tpo : F -+ F,
tpg : F -+ G, tph : F -+ H, and (ft), (gt), (ht), respectively. The identity au­
tomorphism is 130 = tpo. Two arbitrary automorphisms are 131, f3m : F -+ F,
and their flag sequences are (fit), (fmt).
Procedure 2.3. The input data are the class c, an automorphism 131 and
two indicating isomorphisms tpg and tph' The output will be the flag se-

quence (hit) as a permutation of (hI) for which gi
9l

PI'Ph = hit holds. Thus,
we obtain the isomorphism tp;lf31tph : G -+ H.

Let (ft) and (fit) denote the flag sequences of the identity automor­
phism 130 and the given automorphism 131, respectively. We consider each
flag gt in turn in (gt). Then, fit = g 'Pg -1 PI in (fit). If fit = fv in (ft), then

-lp
hv = gt 'Pg l'Ph, thus hit = hv. •

Procedure 2.4. The input data are the isomorphism class c, and two flags
g E G, h E H determining an isomorphism tp between the facets 9 and
h of c. The output data are the indicating isomorphisms tpg, tph and the
automorphism 131 with tpg -1 f3ltph = tp.

308 I. PROK

In c we can find the indicating isomorphisms !pg and !Ph containing
g = gv and h = hw in their flag sequences (gt) and (ht), respectively.
Then, g = ft g and h = ~h. Thus, we have to find the automorphism f31
for which ftl = fw, namely flv = fw in its flag sequence (fit). •

The product of two isomorphisms !pi 1f3I!Pj: Fi -;. Fj and !Pj 1f3m!Pk:

F j -;. Fk is !pi 1 f31f3m!Pk : Fi -;. F k. (Fi, Fj, Fk denote the flags of the facets
Ji, Ij, Ik that belong to c.) In order to create this product we have to know
the product of the automorphisms f31 and f3m.

Procedure 2.5. The input data are the isomorphism class c and two
automorphisms f31 and f3m in it. The output is an automorphism f3n for
which f3n = f31f3m.

We can find the flag flO = tal in (ft): flO = fv. Then fmv = ~m = tfJ.Bm.
Thus, we have to find the automorphism f3n containing fmv = fno in its flag
sequence (fnt). •

The inverse of an isomorphism !pg1f3I'-Ph : G -;. H is !p;;1f31-
1!P9 :

H -;. G. In order to create this product we have to know the inverse of
automorphisms f31.

Procedure 2.6. The input are the isomorphism class c and an automor­
phism f31 in it. The output is the automorphism f3m with f3m = f31-

1.

If we find flv = fo in (fit), the."l loll = fv. Thus we have to find f3m
containing fv = fmo in its flag sequence (fmt). •

3. Facet-Mappings

Definition 3.1. A bijective map of the flag structure onto itself 8: F -;. F
is called a facet-mapping if it preserves the 0-, 1-, ... , (d - 2)-adjacencies.
Thus, the restriction of a facet-mapping to the flags of any facet is an
isomorphism. Let 1) denote the group of the facet-mappings of P. •

Let us consider a facet-mapping 8. Let 10, It, . .. ,/r and Fo, F1, ... ,F r
denote the facets and their flags that belong to the isomorphism class
c in this fixed ordering (Data 2.2; Proc.2.2). The distinguished facet
is 10. The indicating isomorphisms are !PO, !PI,···,!Pr (!Pi: Fo -;. Fi;
i = 0,1, ... , T), and the automorphisms of 10 are f30, {31, ... , {3s. Then
81Fk = rp;l {3jk !Pik : Fk -;. Fik for certain {3jk (k = 0, 1, ... , T). Thus,
8 creates the permutation !Pio' !Pi l , ••• , !Pir of the indicating isomorphisms
!PO, !PI, ... ,!pr and the variation {3jo, f3jl , ... , {3jr of the automorphisms
{30, {3b ... , {3s. (An ordered pair (!Pik' (3jk) will be called a facet-isomorphism

DATA STRUCTURES FOR A POLYHEDRON ALGORITHM

in Data 3.1) We shall use the notation

[
If>io
/3jo

309

for the restriction 8IFoUFl U ... UFr (which will be called a class-automorphism
in Data 3.2) to the flags of the facets belonging to the class. In order to
give a facet-mapping, we have to make a permutation of the isomorphisms
and a variation of the automorphisms in c. This is a concise description of
the flag permutation that is given by a facet-mapping.

We consider the facet-mappings 81 and 82,

8 ['Pio If>il If>ir] and 8 ['PXO 'PXl 'Pxr]
le = /3jo /3j! /3jr e 2c = /3yO /3Yl /3Yr c·

We look for their product

(_ ['Pvo 'Pv! 'PVr]
c - /3wo /3W! /3wr c·

(The index c shows that the permutation matrices are given independently
in each class.) We can see that 811F k = 1f>;I/3jklf>ik : Fk -+ Fik and 82IF i(. =
1f>i;,I/3Yiklf>xik : Fik -+ F Xik • Thus, 81 821FI;: = 'P;I/3jl;:/3Yi k If>xik : Fk -+ F~ik·
Therefore If>VI;: = 'PXik and /3wk = /3jl;:/3Yik. Using this matrix form we obtain
that

I" {.' {.' ['PXio
,">C = UlcU2c = /3. /3 .

)0 Y'O

It is easy to see that the identity element c and the inverse of an element
81 in matrix form are

[
If>o

cc = /30
If> 1

/30
If>r]
/30 c

where If>Pik = 'Pk and /3qik = /3j/.

and {.'-1 _ [If>po If>PI
ulc - /3 /3 qo . q!

A facet-mapping 81 is involutive (identical with its inverse) iff If>iik =
If>k and /3 ji k = /3;;,1 for all k E {O, 1, ... , r} and in each cla£s. The first
property shows that the permutation of the indicating isomorphisms is
involutive (in other words, it makes a pairing), and the second one shows
the connection of the automorphisms belonging to the paired isomorphisms.

Now we define the data structure of a facet-mapping.

Data 3.1. A facet-isomorphism is a record containing three fields. The first
and the second fields are pointers. The first one points to an isomorphism

310 I. PR OK

1 class - automorphism belonging to the isomorphism class e

qEI--1 T <Pi. 11 T Pi. 11 +--1 T <pilll T Pil 11 +-- ... ~I T <Pi. 11 T Pi. 11-1

facet - isomorphismsr--------'

Fig. 3.1. A facet-mapping

(Data 2.1), and the second one points to an automorphism (Data 2.2). The
third field is also a pointer to form a chain of the facet-isomorphisms in a
class. (Knowing the place of a facet-isomorphism in the chain, we obtain
the map as written above.) (Fig.3.1) •

Data 3.2. A class-automorphism is a record containing two fields. The
first field is a pointer to form a chain of the class-automorphisms. (This
chain contains only one element belonging to c now.) The second one is
also a pointer to the chain of the facet-isomorphisms. (The isomorphism
class referred to is given by the place in the chain, because the ordering of
the isomorphism classes is fixed by Proc.2.2.) (Fig. 3.1) "

Data 3.3. A facet-mapping is a record containing two fields. The first one
is a pointer to form a chain of the facet-mappings. The second one is also
a pointer to the chain of the class-automorphisms. (Fig.3.1) .,

Procedure 3.1. The input data are two facet-mappings 0], 02 and the
output is their product (= 0]02. (We shall use the notation above.)

Let us consider the isomorphism class c and the corresponding class­
automorphisms o]e and 62c . We create their product as follows.

We consider each facet-isomorphism (tp ik,!3jk); (it is the k-th one) in
turn in DIe. If tpik is the t-th indicating isomorphism of c (t = id, then
we consider the facet isomorphism (tpx" !3Yt) of 02c. Proc.2.5 creates the
product !3jk!3Yt. Thus, we obtain the k-th facet-isomorphism (tp"J:' !3wk) of
the product (c, where tpVI: = tpXt and !3wk = !3jk!3Yt' .,
Procedure 3.2. The input is a facet-mapping 0] and the output is its
. {"-I lnverse VI .

DATA STRUCTURES FOR A POLYHEDRON ALGORITHM 311

Let us consider the isomorphism class c and the corresponding class­
automorphism blc, We create its inverse as follows.

We consider each indicating isomorphism 'Pk in c. It can be found
in the t-th facet-isomorphism ('Pin (3jt; 'Pit = 'Pk. it = k) of blc, Proc.2.6
creates the inverse of {3jt' Thus, we obtain the k-th facet-isomorphism

('PPk' (3qk) of 8i:\ where 'PPk = 'Pt and {3qk = {3j;
1

. •

Procedure 3.3. The input is a facet-mapping 81. The output data are two
flag sequences (Data 1.3.) go, g1' ... ,gz and ho, hI, ... , hz, where gf1 = ht
for each t E {a, 1, ... , z}.

At the beginning the flag sequences gt and h t are empty. We consider
the isomorphism class c and the corresponding class-automorphism 81c.

We take each indicating isomorphism 'Pk of c and the corresponding facet­
isomorphism ('Pik' (3jk) of 81c in turn. Let (gkJ denote the flag sequence
of 'Pk. Starting from c, {3jk' 'Pk and 'Pik' Proc.2.3 creates the flag sequence

(hkv), Thus, g~tt3ik<Pik = hkv' Therefore we attach (gkv) to (gt), and
attach (hkv) to (ht). e

Procedure 3.4. The input data are two flag sequences (gt) and (ht) as
permutations of the flags of P defining a facet-mapping 81 (gfl = ht, t =
0,1, ... , z). The output is 81 using the data structures Data 3.1-3.3.

We consider each indicating isomorphism 'Pk in turn in c. Let f denote
an element of the flag seqence of 'Pk. If f = gv in (gt), then starting from
c, gv and hv Proc.2.4 gives the indicating isomorphisms 'Pk. 'Pik and the
automorphism {3jk ('Pk 1{3jk'Pik = 811n, where D is the domain of 'Pk). Thus
we obtain the k-th facet isomorphism ('Pik' (3jk) of 81 c. •

4. Autornorphisms

Definition 4.1. A bijective map a : F -+ F is called an automorphism of
the polyhedron P if it preserves all of the adjacencies. Let A denote the
automorphism group of P. It is easy to see that A ~ 1). •

Definition 4.2. Let 81,82 E 1) be facet-mappings. We say that 81 and th
are equivalent (or essentially non different) if there exists an (equivariant)
automorphism a E A of P so that (fQ')'52 = (fD

1 r" for any flag f E F, i.e.
82 = a- 181a. •

Procedure 4.1. This procedure creates the automorphisms of P as facet­
mappings and makes their chain. Using Proc.1.1 in this procedure, we
assume that the input subsequence is 0 (it is empty).

At the beginning the chain is empty. We choose a flag g of P (in Data
1.2). Starting from go = g, Proc.1.1 creates the flag sequence (gt), which
contains all flags of P, and the vector sequence (Ut).

312 I. PROK

Then we consider each element gv of the flag sequence (gt) in turn.
Starting from ho = gv' Proc.1.1 creates the flag sequence (ht) as a permu­
tation of (gt) and the vector sequence (vt). If the vector sequences (Ut)
and (vt) are identical, then the map by gt I-t h t is an automorphism 0:

of P. Starting from (gt) and (ht), Proc.3.4 creates 0: as a facet-mapping
(Data 3.1-3.3).

If an automorphism of P as a facet-mapping has been made, we link
it to the others by a pointer. Finally, we obtain each element of the auto­
morphism group of P. •
Procedure 4.2. The input data are two facet-mappings 01 and 02. The
output is a Boolean value, which shows whether the facet-mappings are
equivalent.

We consider each automorphism 0: of P in turn. Using Proc.3.1 and
Proc.3.2, we obtain the product facet-mapping 0:-1010:. If there exists an
automorphism for which this product is equal to 02, then the procedure
ends with the value 'True', else the procedure gives 'False'. Cl

5. Generator Systems and Facet-Identifications

If the polyhedron P is a fundamental domain of a space group, then the
transformations, mapping P onto its neighbours along its facets, form a
generator system of the group. Let 0 be such a transformation. 0 maps
P onto its neighbour along its facet 1 mapping the facet 1 -1 of P onto 1.
At 0 the flags of 1 -1 are mapped onto the flags of 1 by an isomorphism
cp. The transformation 0 determines the isomorphism cp. Similarly, the
transformation 0- 1 maps P onto its neighbour along its facet 1 -1 mapping
1 onto 1 -I. The mapping of the flags is given by cp-I. If 1 = 1 -1 namely,
if ({; maps P onto its neighbour along its facet 1 mapping 1 onto itself,
then 0- 1 = 0 and cp -1 = cp (cp is an involutive automorphism of 1 or its
identity).

Thus, a generator system can be determined combinatorially as fol­
lows. First, we make a pairing of the facets of P so that the following two
properties are fulfilled.

1. If two facets are in the same pair, then these facets are isomorphic.
(A facet may be paired with itself.)

2. Every facet occurs in exactly one pair.

Second, to each pair [J -1, IJ of facets we correspond a pair of isomorphisms
as follows. Let F- 1 and F denote the flags of the facets, respectively. We
choose an isomorphism cp : F-1

-4 F and make the pair [cp, cp-I]. If a
pair [1, IJ occurs, then the corresponding pair is [cp, CPJ with an arbitrary
involutive automorphism cp : F -4 F of 1.

DATA STRUCTURES FOR A POLYHEDRON ALGORITHM 313

The map whose restrictions to the flags of the facets are the above iso­
morphisms is an involutive facet-mapping (Def.3.1), so-called facet-identifi­
cation. Thus, a generator system determines a facet-identification (or facet
pairing). Conversely, it is obvious that a facet-identification determines a
generator system if we form its restriction to the flags of each facet.

Definition 5.1. Two generator systems are equivalent iff the corresponding
facet-identifications are equivalent (Def.4.2). •

Procedure 5.1. This procedure creates exactly one element from each
equivalence class of the facet-identifications, and makes their chain.

At the beginning the chain is empty. We create the facet-identifica­
tions in turn. The first one comes simply to the chain. Then using Proc.4.2,
we examine whether there is an equivalent element of the chain with the
facet-identification next in turn. If not, then we attach it to the chain.

In order to enumerate the facet-identifications, we consider the invo­
lutive permutations of the indicating isomorphisms <PO, <PI, ... ,<pr in turn
in c. (It is sufficient to consider all non-equivalent involutive permutations.
Two permutations 11"1 and 11"2 are equivalent iff there is an automorphism
0: of P for which 11"1 = 11"-1(0:)11"211"(0:), where 11"(0:) denotes the permutation
of the isomorphisms in the facet-mapping 0:. Moreover, we can apply the
following observation. If two facet-mappings 81 and 82 are equivalent, then
11" (81) and 11" (82) are also equivalent.)

Let us consider a fixed involutive permutation (<Pia, <Pi l , ••• , <Pir) deter­
mining a pairing [<pik' <Pk] of the isomorphisms of c. We construct the vari­
ations /3jo, /3jl , ... , /3js of the automorphisms /30, /31, ... , /3s as follows. We
make the pairs [/3j, f3t], and add them independently in turn to each pair

[<Pik,<Pk]. Thus we obtain the facet-isomorphisms (<Pik,f3jk) and (<pk,f3;/)
from [<Pik,<Pk] and [/3jk,/3,h1]. If a pair [<Pik,<PiJ contains identical iso­
morphisms (ik = k), then we can add to it only the pairs [/3j, /3j] where
/3;1 = /3j. Thus, we obtain only one facet-isomorphism (<Pik,f3ik)' .,

6. The Poincare Algorithm

If the polyhedron P and a generator system are given, then we look for the
defining relations to determine the space group. For this purpose we shall
use the Poincare algorithm [3,5,9]. This algorithm is based on the following
ideas.

Let cl? denote the set of the elements of a generator system (1cl?1 = IFI).
CPi E cl? maps the facet f i-

1 = fj onto Ii, and maps P onto the adjacent
polyhedron prpi along k Moreover, cPj = cpi1 maps f;l = Ii onto /j, and

maps P onto the adjacent polyhedron pcj;j along fj. We choose an edge e (a

314 I_ PROK

(d-2)-face) of P. Let us consider the images of P (at the space group) that
are incident with e. These polyhedra are adjacent along facets. These facets
are incident with e. Let us go round e considered. The generator (P maps
P its adjacent polyhedron ptpl along h. The facet ftl of ptpl is incident
with e, and it is not identical with h. The transformation (Pll(p2(Pl maps
ptpl onto its adjacent polyhedron ptp2tpl along ft l , and so on. Finally, we
obtain the polyhedron ptpntpn-l---tpl that is identical with P = pI, and the
relation (pn(Pn-l ... (PI = 1. Starting with an edge, which has not mapped
onto e yet, we get a new relation, and so on. The combinatorial algorithm
works in the following (inverse) manner (see [5] for more details).

Procedure 6.1. The input is a facet-identification 8. This procedure prints
the generators that are determined by 8, and prints the cycle transforma­
tions, which will be the defining relations with certain natural exponents.

Starting from 8, Proc.3.3 creates the flag sequences (gt) and (ht)

(gf = ht).
We consider a flag f of each facet f of P in turn. If f = gj, then we

print the combinatorial generator

(The isomorphism CPi is the restriction of 8 to the flags of f).
We choose an edge el from the set E (of the (d - 2)-faces). Let

fl be an arbitrary flag of el. We Cieate the flag sequence fl, f2, ... , fn in
the following manner. If fv = gt in (gt) then fV+l is the facet adjacent
((d - 1)-adjacent) flag of h t (ht = ft). The last flag fn is given if fn+ 1 = fl.
Let h,h, ... ,fn and el,e2, ... ,en denote the facet components and the
edge components of the flags fl, f2, _ .. , fn respectively_ Then the procedure
prints the cycle transformation

where CPu is the restriction of 8 to the flags of fu.
Now we consider the set E \ {e 1, e2, ... , en} and cho ose an edge from

it. Starting with this edge, we obtain the second cycle transformation <72,

and so on. When the difference set E \ {the occurred edges} is empty, then
the procedure ends, we have obtained each cycle transformation. 0

Considering the equations o-7i = 1 with arbitrary natural exponents
ki, we obtain the defining relations of a space group r. If the restriction
of 8 to the flags of some facets fv, fw, ... , fz are involutive automorphisms,

·22 2 then the relatlOns CPv = 1, CPw = 1, ... , cpz = 1 must be added [1,3].
In general, r is not yet a discrete group of any space of constant

curvature. This will depend on the exponents ki. However, a combinatorial

DATA STRUCTURES FOR A POLYHEDRON ALGORITHM 315

simply connected space, denoted by pr, can be given. The group r acts
on this space, and P is a fundamental domain of r [4,5,8].

1. Results of the Implementation

Let SId denote the number of the essentially different facet pairings (com­
binatorial d-simplex tilings). It is trivial that SII = 2 = 21. It may be
checked that Sh = 8 = 23 (triangle tilings). The 3-dimensional case (the
tetrahedron) was examined by 1. K. ZHUK, and the results were published
in [10,11]. He found that SI3 = 64 = 26. Our program also verified this
result in 1988 [6]. Zhuk examined the realizations of these cases in the
Euclidean and hyperbolic space. The complete enumeration in the spaces
of constant curvatutre was accomplished by Emil MOLNAR [7].

Knowing the results SIl = 2, Sh = 8, Sh = 64, Zhuk conjectured
that SId = 2dSId_l where SIo := 1 and 1 ::; d [11]. So SI4 would be
1024 = 210. Howeover, our implemented program has given the result
SI4 = 4096 = 212 disproving Zhuk's conjecture. But SId still seems to be a
power of 2. Now we are working to find the correct formula for SId if it is
possible.

We examined the cube of the Euclidean 3-space by our program. This
examination is based on the consideration that there are four solids sur­
rounding each edge in the cubic tilings. Thus, modifying Proc.5.1, we look
for the essentially different involutive face-mappings that give only cycle
transformations with word length either 1 or 2 or 4 by Proc.6.1. We found
298 such essentially different face pairings. Consequently, there are 298
fundamental tilings with marked cubes. Each tiling determines a crystallo­
graphic group, which occurs among the 219 non-isomorphic groups enumer­
ated in [2J, by its generator system and defining relations. We have found
this group for each tiling, and obtained that there are 130 crystallographic
groups with cubic fundamental domain [8J.

References

1. COXETER, H. S. M. - MOSER, W. O. J.: Generators and Relations for Discrete
Groups. 4th edition, Ergeb. der Math., Neue Folge, Bd. 14., Springer-Verlag, Berlin

Heidelberg - New York, 1980.
2. HENRY, N. F. M. - LONSDALE, K.: Symmetry groups. International Tables for X­

Ray Cl1Jslallography. Vol. 1. Kynoch Press, Birmingham, 1969. New edition: Vol.
A. edited by Theo Ha11ll, Reidel, Dordrecht, 1983.

3. MASKIT, B.: On Poincare Theorem for Fundamental Polygons. Adv. in Math. Vol. 7
(l97!), pp. 219-2:30.

316 I. PROK

4. MOLNAR, E.: Minimal Presentation of the 10 Compact Euclidean Space Forms by
Fundamental Domains. Studia Sci. Math. Hung. Vol. 22 (1987), pp. 19-51.

5. MOLNAR, E.: Polyhedron Complexes with Simply Transitive Group Actions and their
Realizations. Acta Math. Hung. Vol. 59 (1-2) (1992), pp. 175-216.

6. MOLNAR, E.: - PROK, I.: A Polyhedron Algorithm for Finding Space Groups. Proe. of
Third Int. Conf. on Engineering Graphics and Descriptive Geometry, Vienna 1988,
Vol. 2, pp. 37-44.

7. MOLNAR, E.: - PROK, I.: Classification of Solid Transitive Simplex Tilings in Simply
Connected 3-spaces. I. The combinatorial description by figures and tables, results
in spaces of constant curvature. Preprint 92-003 Univ. Bielefeld SFB 343 'Diskrete
Strukturen in der Mathematik' Colloq'uia Math. Soc. J. Bolyai 63. Intuitive Geom­
etry, Szeged (Hungary) 1991, North-Holland Co. Amsterdam - Oxford - New York,
pp.

8. PROK, I.: The Euclidean Space Has 298 Fundamental Tilings with Marked Cubes by
130 Space Groups. Colloquia Math. Soc. J. Bolyai 63. Intuitive Geometry, Szeged
(Hungary) 1991, North-Holland Co. Amsterdam - Oxford - New York, pp.

9. VINBERG, E. B. - SHVARTSMAN, O. V.: Discrete Transformation Groups of Spaces
of Constant Curvature. In: Geometriya 2, VINITI, Itogi Nauki i Tekhniki, Sovr.
Probl. Math. Fund. Napr. Vol 29 (1988), pp. 147-259 (in Russian).

10. ZHUK, 1. K.: Fundamental Tetrahedra in Euclidean and Lobachevsky Spaces. Soviet
Math. DoH. Vol 27 (1983), pp. 540-543.

11. ZHUK, 1. K. : Regular Decompositions of Spaces of Constant Curvature by Congruent
Tetrahedra 1. (1980) n. (1983). Preprints of Math. Inst. of AN Belorussian SSR,
Minsk (in Russian).

Address:

Istvan PROK

Department of Geometry
Faculty of Mechanical Engineering
Technical University of Budapest
H-1521 Budapest, Hungary

