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Abstract 

The paper presents the results of a preliminary study on thin shallow shell element based 
on the hybrid-Trefftz (HT) model. This model adopts an assumed non conforming displace­
ment field which satisfies a priori the governing differential equations. The interelement 
continuity and the boundary conditions are enforced by frame fields defined in terms of the 
conventional nodal freedoms. In the p-extension, the frame functions involve an optional 
number of hierarchic displacement modes. Numerical results present the capability of the 
new shell element which can be implemented in existing finite element codes. 
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Introduction 

The hybrid-Trefftz (HT) finite element model has initially been introduced 
and applied for plane stress and plate bending problems in 1977 since and 
has been further developed [1-4]. Although the general description of the 
approach has already been given elsewhere [6] we start with a short and sim­
ple derivation which gives a general insight into the model. The HT method 
extends further the concept of assumed displacement hybrid method [7]. 
The variational formulation is based on the so-called hybrid-II [8J multifield 
functional: 

J(u, Ye) = L Je(u, Ye) = L [J ~O"rEedn - J fjT Vedn 
e e ne ne 

- JtTiidr- Jtr(ii-ii)dr- jt;(ve-ii)dr], (1) 

~ ~u ~ 

where fj is the body force, r et and r eu are portions of the element bound­
ary re on which either boundary tractions t or displacements ii are pre­
scribed. The summation extends over all elements with domains ne. In 
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this hybrid formulation the boundary tractions t e, stresses (Fe and strains 
Ee are expressed in terms of element interior displacement Ve, while ii rep­
resents the independent frame displacement field which is restricted to the 
re boundaries. Now, if the variation of J(ii, v e ) with respect to ii and Ve 
is performed respectively, by virtue of the divergence theorem 

o J ~(F;£edn= f BT(ve)oVedr- J ~CT(ve)Ovedn (2) 
ne re ne 

one obtains 

8uJ = 2:[- 1 f78iidr - 1 t;8iidr + f t; 8iidr] (3a) 
e ret reu re 

and 

OvJ = 2:[1 (-C(Ve) - b)T 8vedn - J 8t; (11 - u)dr 
e ne reu 

- fot;(ve-11)dr- f(B(ve) -te)T8vedr]. (3b) 

re re 
According to the Trefftz approach, let 

and (4) 

These conditions represent, in terms of displacement Ve, the energy-consist­
ent condition of internal equilibrium of an element and the proper definition 
of element boundary tractions. In addition to conditions (4) it is possible to 
impose the boundary conditions on the frame displacements, just as ii=u 
along r eu. Introducing these conditions to Eqs. (3a-b), the stationary 
condition 8J = 0 reduces to 

2:[- 1 tT
8iidf + f t;8iidf] = 0, 

e ret re 
(5a) 

f ot;(Ve - 11) dr = 0, e = 1, 2, ... , N. (5b) 

re 

The set (5b) indicates that the variation (3b) with respect to Ve must sep­
arately vanish for any element. Thus, the HT model is based on assumed 
displacements that a priori satisfy the governing differential equations and 
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enforce the interelement continuity and boundary conditions in integral 
sense. Such a model appears as directly opposed to the conventional dis­
placement model in which the interelement continuity and the essential 
boundary conditions should be verified a priori. Different derivations which 
give results identical to (5a-b) were presented in references [4-5]. 

In the sequence for a particular element the non-conforming internal 
displacements or the Trefftz functions are approached by 

m 

Ve = ve + L Nejcej = ve + Nece, (6) 
i=l 

where Ce are the undetermined coefficients and ve and Ne are the particular 
and homogeneous solutions to governing equation (4), respectively such 
that 

and C(Ne) = 0 on (7) 

The boundary tractions along the element boundary are derived from the 
Trefftz functions as 

0;;:'" 0 
te = t e + .l....J Tejcej = t e + T eCe , (8) 

i=l 

o 0 

where te corresponds to Ve. The frame displacements 

N 

ii = L L Neidei = L Nede (9) 
e i=l e 

at the boundary re of a particular element are defined in the customary 
way in terms of nodal parameters de and, as in the conventional finite ele­
ment formulation, satisfy the boundary conditions along r eu. The element 
parameters Ce can be expressed in terms of nodal parameters de from (5b) 
as 

(10) 

and from (5a) the element stiffness matrix Ke and the equivalent nodal 
forces re are 

(11) 

where the auxiliary matrices are evaluated as the following integrals: 
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ge = f N~ (i e - te)dr . (12) 

re 
As may be seen, the evaluation of these element matrices only calls for in­
tegration along the element boundaries which permits to generate elements 
of a very general shape. Here it is worth mentioning that the symmetric 
property of Ke follows from the symmetry of matrix He which is, however, 
consequence of the energy consistent formulation of the basic differential 
equation (4). Since the final unknowns are the nodal degrees of freedom 
de and the formulation yields a symmetric positive definite stiffness matrix 
Ke this element is suitable for implementation to standard finite element 
programs. 

Shell Element 

The geometry for an arbitrary shell element is shown on Fig. 1 where X, 
Y, Z are the global coordinates and x', y', z' are the C local ones. The 
element reference plane is defined by these x' and y' axes, while x and y are 
the orthogonal curvilinear surface coordinates lying along the midsurface 
principal curvature directions. For the size of elements normally used in 
finite element analysis of shells, the height z' above the reference plane is 
a small value. Hence, each element may be considered as geometrically 
shallow with respect to its own x' y' plane. This assumption is adopted 
exclusively to the geometry, and independently of this fact, both the deep 
or shallow shell theory can be implemented. 

For geometrically shallow shell elements with any (more than five) 
nodes we may use a quadratic polynomial in the reference frame to inter­
polate the middle surface. Replacement of the actual middle surface by its 
osculating paraboloid permits to find the x, y directions of principal curva­
tures and the assumed, approximately constant g;r; = 1/ R;r;, gy = 1/ Ry values 
of principal curvatures. The sign of curvature is positive if the center point 
is located on the positive side of z direction. Furthermore, (8z' / 8x')2« 1. 
(8z' /8x')2« 1 implies that the orthogonal axes x' and y' of the reference 
frame and the x and y projections will be parallel. 

To develop an HT shell element, the choice of a suitable shell theory 
must first be made. Adopting the usual postulates of the first order theory 
of thin shells, the rotations and the nonvanishing strains in the x, y surface 
frame of the geometrically shallow element are given by [9] as: 
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z 

Z' 

5 

Fig. 1. Geometry and co-ordinate systems for geometrically shallow formulation 

8w 
a = -8 +gyV, y -

8w 
f3 = -- -gyU 

8x -
(13) 

and 

8u 8f3 
ex = 8x - gxw + z· 8x ' 

8v 8a 
ey = - - gyW - Z • - , 

8y 8y 

ex =.!. (8v + 8u) + z . .! . (8f3 _ 8a) . 
y 2 8x 8y 2 8y 8x 

(14) 

One may derive the five equations of equilibrium of thin shells with sym­
metric stres~ resultants and couples from the principle of virtual work which 
leads to the following energetically consistent description in the form 

8Nx 8Nxy 
-8 + -8- - gxQx = -Px, x y--

8Ny 8Nxy 
-8 + -8- - gyQy = -Py, 

Y x--

8Qx 8Qy 
gxNx + gyNy + 8x + 8y' = -Pz , (15) 

and the definition of transversal shear 
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Q
. _ oMx oMxy 

x - ox + oy , 

Q 
_ oMy oMxy 

y - oy + ox ' (16) 

with the proper boundary conditions. Combination of the constitutive 
equations of one isotropic layer with the Eqs. (13-15) yields the following 
three governing differential equations in terms of the local displacements 
11., v, w which provide a suitable basis of a general HT thin shell element: 

ow h2 o(.6.w) Px 
- (gx + vgy)· ox + 12 . gx . ox = - K ' 

011. ov 2 2 
-(gx + vgy)· ox - (gy + vgx)· ay + (gx + gy + 2vgxgy)· w 

_ h
2 

• [~.6.w + gx. o(~w) + gy. o(.6.w)] = _pz . (17) 
12 ox oy K 

Here 

K-~ 
- 1- v 2 ' 

and .6. is the harmonic operator in the x, y surface frame of the geomet­
rically shallow surface. The energy consistency here is reflected in the 
symmetry properties of differential operators [10-11]. However, this set of 
equations contains a number of terms which, in certain cases, are of small 
importance for the numerical results. To preserve the energy consistency 
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of the basic equations, simplifications can be made on the kinematic equa­
tions (13-14) only. The usual way is to ignore the underlined terms in 
Eq. (13) set 

8w 
a=-, 

8y 
f3 = _ 8w . 

8x 
(18) 

This is equivalent to neglecting the contribution of the circumferential dis­
placements '11., v in the expressions of the bending strains. From the prin­
ciple of virtual works, the consistent simplified equations of equilibrium 
may be shown to be represented by the Eq. (15) without the underlined 
shear force terms. Thus, the discarding of the gxQx and gyQy terms goes 
along with omission gxv and gyU in (13) whereas their separate handling 
would lead to shell theories unsuitable for the use in HT context. In deep 
structures these terms can be bypassed in axisymmetrical problems where 
gxv = gyU = O. In other cases, we have to accept that the net finite ele­
ment result converges toward the Donnel-Vlasov solution and expect the 
convergence toward the deep shell solution simply because the individual 
finite elements of a deep shell are geometrically shallow is irrelevant. A 
detailed discussion of the possible errors introduced by this step is found in 
[9]. Apart from some special situations - for example the simple bending 
of a circular cantilever - the numerical difference between the deep and 
shallow solutions is small, smaller than the numerical error coming from 
the discretization in many published reference results. 

Combining the simplified equations (13) and (15) with the constitu­
tive equations leads to Eq. (17) without the underlined terms. The energy 
consistency is reflected again in the preserved symmetry properties of dif­
ferential operators. 

The Trefftz functions ~ e and Ne can be generated as a particular 
solution and a T-complete set of homogeneous solution of the simplified 
Eq. (17). Next, we consider the homogeneous Fourier series solution for 
dou bly curved shell of the form 

with 
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n7r 
ay=-, 

ly 
(20) 

where Ix and ly are suitably, chosen dimensions. Presently, Ix = ly = radius 
of circumscribing circle and the x = y = 0 origin is placed in the center of 
element. Introducing this series into (17) and setting Px=Py=Pz=O leads 
to a system of ordinary differential equations for the unknown functions 
U, V, W which can be easily solved [16]. The usual procedure leads to 
polynomials with eight complex roots, thus, each (Uin, Vin, Win) set in (19) 
includes eigth independent components and, as a consequence, there are 
32 independent solutions to Eq. (5) for each n> 1. The n = 0 solution can 
be composed of 4+4 = 8 independent functions. From these solutions we 
may construct the in-element matrices of the HT shell element, namely the 
generalized displacements (6), internal forces and internal traction fields 
(8) as 

vr = tu, v, W, a, .8], 

ur = [Nx, N y, N xy , Qx, Qy, M x , My, Mxy] , 

NnX] Nny 

te = Qn = 
Mnx 

Mny 

Nxnx + Nxyny 
Nxynx + Nyny 
Qxnx + Qyny 

- Mxynx + Mxny 
Mxnx + Mxyny 

with components in local x, y surface frame. 

(21) 

The interelement continuity and the boundary conditions are enforced 
via the interelement field or frame functions which are defined in terms of 
the five conventional nodal parameters [u, v, w, a, .B] of thin shell elements. 
Because the Kirchhoff assumption is used, the ii frame function (9) should 
include suitable and independent interpolations of iL, iI, w displacements 
and the normal rotation wn = ow / on. 

For the p-version of HT element, in addition to the linear interpo­
lation of iL, iI, wn and the cubic interpolation of transverse displacement 
W, the iL frame function will be supplemented with optional number M of 
hierarchic modes along each element side. With the notation of Fig. 2, 
such frame functions along the element side A-C-B can be defined as 
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~B 

=-1 n=(nX1ny10] 

Fig. 2. Displacements and rotations of the frame 

Here J = Ids 1 d~l, -1 ~ ~;::: + 1, and the Hermitean shape functions and the 
bubble functions are [5] 

Nl=(1-~)/2, 

N3 = (e3 
- 3~ + 2)/4, 

N5 = (-e+3e+ 2)/4, 

Li = ~i-l(l_ e), 

N2 = (1+~)/2, 
N4 = (e3 -e2 

- e + 1)/4, 

Ns = (e + e - ~ - 1)/4, 
Mi = ~i-l(l_ ~2)2, i = 1,2, .... 

The value of coefficient S in (22) is equal either to +1 or -1 according to 
the orientation of A-C-B side. 

The purpose of S is to ensure the unic displacement definition for 
even and odd bubble functions along A-C-B line common to two element 
sides with opposite orientation. The final matrix form of frame functions 
for a particular element side in terms of nodal parameters, using the simple 
transformation of rotations on Fig. 3 as 

1 Bw 
Wt = J' Be ' 
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may now be written as 

al 

bl 
U U 

i1. + Ne •. 

Cl 
V V dl 

u= W =NAS ' w +NBs ' a2 
0: 0: b2 
13 13 A 

where the submatrices are as follows: 

NAB = 

(5 X 5) 

(5 x 5) 

Ne. = 
(5XM) 

NI 
o 
o 
o 
o 

L1 
o 
o 
o 
o 

o 
NI 
o 
o 
o 

o 
Ll 
o 
o 
o 

o 
o 

o 
o 

N3 Jnx N4 
nxN3/ J niN~ + n~Nl 
n yN3/ J nxny(N~ - NI) 

o 
o 

o 
o 

N5 JnxN6 
nxN~/ J niN~ + n~N2 
nyN~/ J nxny(N~ - N2) 

o 
o 

MI 
nxM{jJ 
nyMUJ 

o L3 
o 0 

M2S 0 

o 
o 

o 
o 

Jny N6 

nxny(N~ - N2) 
2N' 2N ny 6 + nx 2 

nxM2S/J 0 
nyM2S/J 0 

o 
L3 
o 
o 
o 

M3 
nx M 3/J 
nyM~/J 

(23) 

(24) 

The M hierarchic degrees of freedom of an element side can be associated 
with its mid-side node C (see Fig. 2). In the p version, the solution accuracy 
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is controlled by modifying uniformly or selectively these side freedoms M 
while the mesh remains fixed. The increase of M numbers is accompanied 
by corresponding increase of m, the number of Trefftz functions in (20). 
The necessary but not sufficient condition for the stiffness matrix to be of 
correct rank is 

m ~ NDOF - NRIG, (25) 

where NDOF is the number of element degrees of freedom (vector de) 
and NRIG= 6 the number of rigid body modes. The numbers m given in 
Table 1 have been chosen to satisfy the stability condition (25) and provide 
a direction insensitive displacement field. 

Table 1 
Numbers m and M of Trefftz and frame functions. 

NG: Gauss points per side, DOF: total element freedoms 

M Triangl. Quadr. NG 
m DOF m DOF 

0 24 15 24 20 8 
3 24 24 40 32 8 
7 40 36 56 48 10 

11 56 48 72 64 12 
15 72 60 88 80 14 

It is obvious from the definition (12) of the matrices He and G e that 
the Ve must not include the zero strain displacement terms. These missing 
VRe terms, if necessary, can be calculated later by the least square matching 
between the nodal values of (6) and the functions (9) as 

2:(Ve + VRe - Nede) 
2 

= minimum. 
i 

(26) 

The VRe zero strain displacement mode of the Donnel - Vlasov theory is 
given as 

UR 

~ a] • [! 
0 gx x 

VR 1 gyy 

VRe = WR +a2 . 0 +a3 . 1 
QR 0 0 
i3R 0 0 
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[ 

(gyy2 _ gxx2) /2 
-gyxy 

+a4· -x 
o 
1 
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+a5· 

Numerical Study 

-y 
x 
o 
o 
o 

(27) 

The quadrilateral HT shell element was implemented and tested in a finite 
element program system and its performance was assessed on the following 
two examples: 

A. The problem of a short circular cylinder with an axisymmetric line 
load serves as a good tool to analyse the capacity of the HT element to 
represent highly localized effects (Fig. 3). Because of the symmetry, 
only a segment was analysed with local displacements and rotations. 
The nodal loads re (11) were calculated as the usual work equivalents, 
just as te = 0, ve = O. The results in Table 2 show the rapid convergence 
of the peak bending moment with increasing M side DOF, and a 
slightly slower convergence with increasing number of elements along 
the generator. The difference in bending moments Mx at points A and 
C of Fig. 3 shows that the axisymmetric behaviour of Trefftz functions 
- which was imposed via the boundary conditions - is recovered 
with higher M values only. It is due to the fact that the polynomial 
frame functions of lower degree could not enforce the rapidly varying 
exponential distribution on the internal field which otherwise includes 
the necessary components of the theoretically exact solution. This 
fact can be observed on the results in Table 3 as well where a selective 
control of p method was used by changing the numbers of freedoms 
at side nodes C and S independently. The results for the deflection 
are much more accurate than the internal forces. For example, with a 
single element used with M = 0 at all sides, the deflection W A = 0.69904 
is less than 1% in error with respect to the exact 0.70612 value. The 
error distribution study showed that the errors are the largest always 
at the element corner. 

B. Pinched cylinder with end diaphragms (Fig. 4). This example was 
used to test the element ability to model both inextensional bend­
ing and complex membrane states. The reference deflection Wc = 
-1.825 . 10-5 [4] under the load was computed from Fourier series 
expansion of Fliigge's deep cylindrical shell equation. The deflec­
tion results summarized in Table 4 show convergence toward the 
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A 
Y 

9 y=-1/R =- 0.01 

L = 20. 

h = 1. 
E =2.105 

T =0.;3 

=100 

z 

. Fig. 3. Short cylinder with axisymmetric line load 

Table 2 
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y 

Short axisymmetric cylinder, % errors in moment Mx at C and A and in shear 
force Qx at C. Exact resulte MxA = MxA = -409.848, Qx = 100.0. 

M 

0 

3 

7 

11 

15 

1xl lx2 lx3 

tlMxc tlMxA tlQxc tlMxc tlMxA tlQxc tlMxc tlMxA tlQxc 

-8.41 21.90 -7.62 0.76 -5.17 4.72 0.44 -0.98 2.10 

-5.23 20.29 -1.89 0.73 -4.74 4.42 0.43 -0.91 2.00 

0.42 -1.57 2.05 0.03 -0.02 0.16 o. O. 0.02 

-0.01 0.14 om o. O. 0.02 O. O. O. 

O. O. 0.03 O. O. O. O. o. o. 

Wc = Wc = -1.793 . 10-5 which is the converged shallow shell solu­
tion of this problem. The difference between the two theories is less 
than 1.5% in this value. It is worth mentioning that the difference 
between Trefftz deflection Wc (20) modified with the zero strain dis­
placement (27) and frame (nodal) deflection Wc (23) appears to be 
proportional to the accuracy. In Table 5, the internal force compo­
nents at point A can be seen. The rate of convergence is slower in this 
point which is close to the location of singularity. In the presented 
form, the P force was taken into account as a work equivalent nodal 
load. According to the experience with the HT plate element, the 
accuracy can increase if the given loads are incorporated via the ve 
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Table 3 
Short axisymmetric cylinder. Selective p-convergence for 1 X 1 mesh. % error in M xA ' 

MS=hierarchic DOF at straight sides. MC=hierarchic DOF at curved sides, total 
number of DOF in brackets 

MC 

0 
3 
7 

11 
15 

0.50 

0.25 

10 20 

3 
-20.29 26 
-20.29 (32) 
-24.90 (40) 
-25.75 (48) 
-27.62 (56) 

11 

7 

15 

11 15 

______ ___ 0.%7 

;.::-:::-:-:=-=8t!!!_F::_:":_ 0.954 
0.943 

~~:::""-_.J.'--O.853 
I I 
I I 

- - -,- - - - - - T - - - 0.770 
I I 
I I 

7r----....... ---~- 0.655 

NI 
1'1 

I 
I 
I 
I 
I 

I 
I 
I 

col 
col 

I 
I 
I 
I 
I 

r-----;.---+---~-- 0.269 

30 40 50 60 70 80 m 90 

Fig. 4. Pinched cylinder with end diaphragms. Boundary conditions 
x=L/2, v=w=Q=O 

particular solution. This can be done by adopting the fundamental 
solution given in [15]. 
Because of its complexity, this example is useful to study the optimal 

number of trial functions. If the m number of internal functions in (6) or 
in (20) is high relative to the M side degrees of freedom in (24) (number 
of frame functions), this may lead to unefficient overdimensioning in the 
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Table 4 
Pinched cylinder with end diaphragm, 

p and h convergence of deflection under the load from internal/frame field, 
DOF in brackets. Solution *: m = 104. 

M -wc· 105
/ - Wc . 105 

lxl 2x2 

0 0.0482/0.0744 (20) 0.1355/0.1818 (45) 
3 0.1211/0.1095 (32) 0.5143/0.5256 (81) 
7 0.4427/0.4645 (40) 1.2221/1.2175 (129) 

11 0.9672/0.9297 (48) 1.5571/1.5389 (177) 
15 1.2678/1.3025 (56) 1. 7183/1. 7169 (225) 

4x4 8x8 

0 0.4391/0.6035 (125) 1.1651/1.4471 (405) 
3 1.3938/1.4328 (245) 1.6967/1.7305 (837) 
7 1.6970/1.7096 (405) 1.7809/1. 7877 (1413) 

11 1. 7739 /1.7733 (565) 1. 7918/1. 7937 (1989) 
15 1.7864/1.7863 (725) 1. 7918/1. 7920 (2565) 

16x 16 

0 1.6509/1.7416 (1445) 
3 1.8152/1.8289 (3077) 
7 1. 7980 /1.8003 (5253) 

11 1. 7983 /1. 7999 (7429) 
15 1.7934/1.7935 (9605) 

15* 1.7931/1.7931 (9605) 

Table 5 
Pinched cylinder with end diaphragm. 

Internal forces at point A of Fig . .4 

M -M.A .10-1 

2x2 4x4 8x8 16x 16 
0 0.028 0.147 0.856 1.560 
3 0.198 0.830 1.442 1.551 
7 0.502 1.179 1.359 1.233 

11 0.971 1.350 1.210 1.231 
15 1.141 1.308 1.229 1.250 

-N"", .10-2 

0 0.257 0.529 0.759 5.855 
3 0.963 3.367 5.251 4.861 
7 3.794 4.470 4.768 4.772 

11 4.703 5.152 4.821 5.071 
15 4.980 5.011 4.955 4.990 

37 
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assembled problem. To illustrate the nature of convergence, Fig. 5 displays 
for 2 X 2 and 4 X 4 meshes the change of normalized strain energy U jU*. 
(Here U* = 0.2241459 . 10-5 calculated on 16 X 16 mesh with M = 15 and 
m = 104). This figure clearly shows the convergence for fixed M and m 
(h-convergence) and for fixed mesh and M (p-convergence). In the latter 
case, the stabilized final value highly depends on the M number of side 
modes in the frame field. In other words, these stabilized solutions are 
referred to the given structure constrained by the 'weak' polynomial frame 
functions. This result confirms the data of Table 1 which indicates the 
combined increase of m and M. 

9y=-1/R=-1/300 

L = 300 

h = 3 
E = 3.106 

V = 0.3 

P = 1 

=5.h=15. 

Fig. 5. Pinched cylinder with end diaphragms. Convergence and optimum M-m anal­
ysis for 2 X 2 (continuous line) and 4 x 4 (dashed line) meshes 

The trend of research is presently to implement the solution of the more 
general basic equation (17) and to extend the formulation relying on the 
observations of the successful HT plate bending elements [3-6]. 

Concluding Remarks 

The study has demonstrated the possibility of extension of the HT FE 
model to thin shells. Although the Trefftz functions used here have been 
based on a shallow shell theory, the deep shell theory can also be used. 
Provided that the coefficients of the governing differential equations remain 
constant and, as a consequence, the principal curvatures of the middle 
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surface do not vary over the element, the generation of such functions 
presents no basic problem. The requirement of constant curvatures implies 
that shells of a general geometry will have to be approached by using 
comparatively small h-method HT elements rather than the large HT p­
elements the use of which will be confined to special forms of shell geometry 
and load cases. The Trefftz functions used in the present study represent 
only one of possible choices. A considerable amount of further research 
will be necessary before the HT shell elements reach a degree of maturity 
comparable to that now achieved by the HT plate and plane elasticity 
elements. 
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