
PERIODICA POLYTECHNICA SER. MECH.ENG. VOL. S5, NO. 1-I!, PP . • 9-6. {1991} 

HARDENING EFFECTS ON THE STRESS 
DISTRIBUTION IN A SHRINK FIT UNDER CYCLIC 

THERMAL LOADING 

A KOVACS 

Department of Technical Mechanics, 
Technical University, H-1521, Budapest 

Received December 4, 1991. 

Abstract 

The variation of the stress distribution during the thermoelastic-plastic deformation in 
an assembled shrink fit due to a steady-state, homogeneous temperature cycle is studied. 
The use of the Tresca yield condition and its associated flow rule with a linear isotropic 
hardening rule makes a semi-analytical presentation possible. Numerical results are shown 
and compared with those of a non-hardening model. 
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(J" r radial stress 
(J"(J hoop stress 
(J" z axial stress 
if Tresca-type equivalent stress 
€r radial strain 
€(J circumferential strain 
€z axial strain 
"€P equivalent plastic strain 
u displacement 
{} temperature [0C] 
T absolute temperature [K] 
Y yield stress 
11 hardening parameter 
Pb joint pressure 
io initial interference. 

Notation 

Introduction 

A shrink fit is composed from an inner and an outer cylindrical part of
ten modelled as thick-walled tubes or rings. Thermal loading is necessary 
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during the assemblage in order to vanish the initial interference, i.e. the 
overlapping of the rings. The effect of this initial thermal loading on the 
stress distribution has been studied in many papers in the last decade, e.g. 
by RASCHKE (1983), MACI( (1986) and CORDTS (1990). 

However, a thermal loading can occur after the assemblage, as well. 
For instance, when a warm liquid or gas is conveyed in a tube enforced by 
an outer ring or during an intermediate heating process in order to remove 
unwanted residual stresses. In shrink fits this heating can be dangerous 
from the point of view of the correct functioning, because with increasing 
the temperature the actual yield limit lowers and therefore plastification 
can occur. Large thermal loading can lead even to the full plastification 
of one or both parts of the fit which would mean the loss of stability, i.e. 
the load transmissibility of the device. On the other hand, the residual 
stress distribution is caused by the joint pressure which is proportional to 
the maximum transmissible external load. Therefore, the calculation of its 
variation under a temperature cycle is also important. 

The first approach dealing with the consequences of a temperature cy
cle on the stress distribution after the assemblage was made by LIPPMANN 
(1990). An almost analytical method was presented with the assumption 
of plane stress state and thermoelastic - perfectly plastic - materials. The 
stresses and strains in the plastic domains have been calculated with the 
use of the Tresca yield condition and its associated flow rule. The present 
paper is a development of the above method including a linear, isotropic 
hardening rule. We assume that the initial stress state is elastic, the ther
mal loading is quasi-static in time and homogeneous in space, i.e. each part 
of the device is heated or cooled with the same temperature. The materials 
of the rings are homogeneous, isotropic and only infinitesimal strains occur. 
Rate dependence is disregarded. The thermal unloading is assumed to be 
purely elastic. Upon the above assumptions a semi-analytical method is 
derived. The numerical treatment of the problem by finite elements has 
been studied by KovAcs (1991). 

Governing Equations . 

The equilibrium equation: 

d(Tr (Te - (Tr 
(la) = dr r 

or 
d(r(Tr) 

(lb) --- = (TO, 
dr 

The geometric equations: 



or 
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du 
Er =-, 

dr 

U 
E(J =-, 

r 

d(rE(J ) 
El'=--' 

dr 
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(2a) 

(2b) 

(2c) 

The total strains are decomposed into an elastic and a plastic part: 

The Hooke's law: 

Er = E~ +E~, 

E~ = ~(O"r - VO"(J) + exT, eqno(3a) 

Eg = ~(O"(J - VO"l') + exT. 

The Tresca yield condition: 

(j == O"} - 0"3 = Y, 

where 

(3b) 

( 4a) 

( 4b) 

The value of Y,JO IS obtained from a simple approximation (LIPPMANN, 

1990), 
Y,JO = Yo + m (19 - 190), 

190 = 20[°C], 19 -190 < 150[°0] 

, m is a material parameter. 

The associated flow rule: 

( 4c) 

€~ + €~ + €~ = 0, (5a) 
.]! < O·p O·p > ° (5b) E} _ ,E2 = ,E3 _ . 

We use the integrated form of the flow rule. Since the structure is loaded 
statically and the initial state is elastic 

E~ + E~ + E~ = 0, 

E~ ::; 0, E~ = 0, E~ >- 0. 

(6a) 

(6b) 



52 A. KOVACS 

Formulation 

The shrink fit consists of two rings. In the following the subscript i 
denotes the inner ring (shaft) and a denotes the outer ring (hub). Since the 
materials of the rings do not have to be the same, all material parameters 
are subscribed. 

Plastification starts at the inner surface of the rings, therefore two 
plastic radii can be defined, x in the shaft and y in the hub. 

Elastic-plastic Deformations in the Shaft 

The principal stresses are 

O'} = O'z = 0, 0'2 = O'r, 0'3 = 0'1). 

Because of the isotropy of the material 

Plastic zone: a :s; r :s; x 
From (4a) we obtain 

CTI) = -Y;. 

Solving the Eq.(lb) with the boundary condition 

CTr{a) = 0, 

the radial stress is 
r 

CT r = -; J Y;dr. 
a 

From Eq.2c) 
r 

1J a El) = - E,.dr + -EI)(a). 
r r 

a 

Let Cl = aEI)(a). 
Since E2 = Er, thus from Eg. (6b) 

and we can apply Hooke's law 

e E,. = E,., 

(7) 

(8) 

(9) 

(10) 

(11) 
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Substituting (7) and (8) into (11), we obtain 

(12) 

and from (9) 

r r 

€o = ~i [; J ( -; J Yidr + /liYi + aiTEi)dr] + ~1. (13) 
a a 

The plastic circumferential strain is 

(14) 

Since /li, ai, Ei and T are independent of r, thus with the use of Eqs. (3b), 
(7), (8) and (14) 

(16) 

The equivalence of the plastic work gives (GAMER, 1983): 

Since 0'1 = 0, €~ = 0 and (j =-0'3, thus 

(17) 

Substituting (16) into (17), then into (4b), we obtain 
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Assuming that 1]i -:j:. 0, we arrange (18) in the following form 

r r 2 

Y~ -! J(! JYdr)dr = ~y:.t90 - C2 
1 82 r r I 82 I r ' (19) 

a a 

where 

If 1]i = 0, then O"B = - 'Yit9o=const., 0",. = - 'Yit9o(l- air), see in (LIPPMANN, 

1990). 
We multiply Eq.(19) by r and derive it with respect to r twice. Finally, we 
obtain the following second order ODE 

2 d2Y,. dY 2 2 
r dr 21 + 3r dr

1 + (1 - {; )'Yi = (1 - 8 )'Yit9o. (20) 

The general solmion of (20) can be written in the following form 

Y, .t!. C -1+6 C -1-6 
i = .I it90 + 3 r + 4 r , (21) 

C3 and C4 are integration constants. Their values can be determined from 
the following boundary conditions 

(22) 

and 
F(a) = 0, (23) 

where F(r) is the primitive function of 'Yi(r). Using (22), we obtain 

(24a) 

while from (23) 
C3 a1+6 

[; = -Yit90 a26 + x 26 ' (24b) 

Substituting these values into (21) and then into (8), we obtain 

a -1+6 26 -1-6 
[ 

1+6 ] 
0",. = -'YitJo 1 - a26 + x26 (r + x r ), (25) 
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or, with the use of the dimensionless geometrical parameters qi 

~i = x/b 

With Eqs.(24a) and (24b) (21) has the following form 

Yi = Yi~o [1 - 8 qli~:r ((i) -1+6 - do (i) -1-0)]. 
Substituting (27) into (7), a'e can be determined. 
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= a/b, 

(26) 

(27) 

The radial strain is given by Eq.(3a), the elastic part of the circum
ferential strain by Eq.(3b). From the hardening equation (4b) we obtain 

(28) 

thus with Eqs.(27) and (17) E~ can also be calculated. Finally, 1L can be 
determined from (2b). 

Elastic zone: x :s; r :s; b 

It is well-known from the elasticity theory applied to thick-walled 
cylinders that the radial and hoop stresses are 

where Al and A2 can be determined from 

a',.(b) = -Pb, 

a'e(-x) = a'e(+x). 

(29a) 

(29b) 

The latter condition means the continuity of the hoop stress at the limit 
of the plastic zone. With the use of these equations we obtain 

1 [ 2 ( 1) ( er)] a'r = -1 + e Yi~oei 1 - (r/b)2 + Pb 1 + (r/b)2 ' (30) 

1 [ 2 ( 1) ( e?)] a'e = -1 + ~1 YivO~i 1 + (r/b)2 + Pb 1 - (r/b)2 . (31) 

The strains and the displacement can be determined from Eqs.(3a), (3b) 
and (2b), respectively. 
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Elastic-Plastic Deformations in the Hub 

The principal stresses and strains are the following: 

Plastic zone: b :5 r :5 y 

From Eq.(4a) we have 

O'(} - 0',. = Ya , (32) 

thus from Eq.(la) 
dO'r Ya = dr r 

(33) 

Solving (33), we obtain 

J" Ya 
O'r = -;:dr - Pb, (34) 

b 

and from Eq.(32) 

J
r Ya 

O'g = -;:dr - Pb + Ya. (35) 

b 

From Eq.(6b) we have E~ = 0, thus in eq.(6a) 

p p ° E(} + E,. = , (36) 

which means that 
(37) 

We substitute (34) and (35) into (3a) and (3b), respectively, then using 
(2a) and (2b), we obtain from (37) 

du u 1 - Vu Ya ( " ) dr + -; = E;:- 2 / -;:dr - 2pv + Ya + 2cxaT. (38) 
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The solution of this linear first order ODE is 

r 

U 1 - Va J Ya Pb Dl - = -- -dT - (1 - Va) - + Q:aT + 2' 
T Ea T Ea r 

(39) 
b 

where Dl is an integration constant. 
Since E~ = EO - Ee, thus from Eqs. (39), (2b) and (3b) we obtain 

(40) 

The equivalency of the plastic work gives 

(41) 

From Eq.(36) we have Ef. = -E~, thus dEf. = -dE~ and 

( ) d P - -d-P 
(Te - (T r Eg - (T E • (42) 

Comparing Eqs. (42) and (4a), one can say that 

Considering elastic initial state, the integration of the latter equation gives 

-EP - EP - o· (43) 

With the use of Eqs. (43) and (40) we get from eq.( 4b) 

Ya = S ( 1 + 1]a ~2l ) , (44) 

where 
s == YadO 

1 + 1]a Y~!Q . 
Substituting (44) into (34) and (35), we obtain 

( 
r 1]a Dl) 

er,- = S In b - 2-:;:2 + D2, (45) 

(46) 
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where D2 is an integration constant. 

Elastic zone: y ~ r ~ c 

The elastic stresses are 

while from Eqs.(2b) and (3b) we have 

u 1 - Va A 1 + Va A4 T -=-- 3+--?+aa . 
r Ea Ea r-

For the calculation of DJ, D2, A3 and A4 we use the following boundary 
and continuity conditions 

oAc) = 0 
O'r( -y) = 0',.( +y) 

0'( +y) = Ya 1?O 

u ( - y) = u ( +y ). 

The solution of this set of equations gives 

DJ = Ya1?O y2, D2 = Ya 1?O [-1 + (¥..) 2 _ 28 In ¥.. + 8 7}a lJ . 
Ea 2 c Ya1?O b Ea 

Substituting these values into (45) and (46), the stresses in the plastic 
zone can be determined. With the use of the dimensionless geometrical 
parameters qa = c/b and ea = y /b the elastic stresses are 

= _ Ya 110 (~a)2 [~ -1] 
O'r 2 qa (r/b)2 , (47) 

YavO (~a)2 [q~ 1] 
O'e = -2- qa (r/b)2 + . (48) 

The strains and the displacement can be calculated from Eqs.{3a), (3b) 
and (2b), respectively. 
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In order to calculate the three remaining unknowns, x, y and Pb we 
use the following conditions 

O"r(-X) = O"r(+X), 
0",.( +b) = -Pb, 

I u(+b) - u(-b) 1= io. 

After the substitution we obtain the following set of transcendent equations 

Pb l[ (~a')2 2 Q ( 2)] - + - -1 + - - --In ~a + -- 1 - ~a = 0, 
Yat?o 2 qa 1 + Q 1 + Q 

Yat?o[l-Va( (~a)2 1 [ (2 )]) 2] I - -- -1 + - - -- 2ln ~a + Q ~a - 1 + €a -
Ea 2 qa 1 + Q 

where Q == 7)aYat?O/ Ea. 
This set of equations 'can be solved numerically. We have to avoid the 

full plastification of one of the rings, therefore 

must be satisfied. If the first part of the thermal cycle is heating, an upper 
bound can be derived from these conditions for the joint pressure. Namely, 
from Eq.(26) 

Pb = YitlO (1 - 2 q;+626 ) 
1 + qi 

would cause the failure of the shaft and from Eq. (45) 

(49) 

(50) 
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would cause the failure of the hub. The lower bound at elastic-plastic 
deformation would be the pure elastic deformation, i.e. when ~i = qi and 
~a = 1. From Eqs. (26), (30) and (45) we obtain 

YiiJO ( 2) Pb = -2- 1 - qi , (51) 

(52) 

Thus 
Pbmin ~ Pb < Pbmax, 

where Pbmin is the smaller Pb from eqs.(49) and (50), while Pbmax is the 
greater Pb from Eqs. (51) and (52). 

Unloading 

The unloading process is assumed to be completely elastic, therefore the 
unloading/reloading procedure presented in (LIPPMANN, 1990) can be ap
plied in order to determine the final joint pressure. Since the material 
parameters E, v and a can vary with the temperature, but this variation is 
elastic, this is treated as if the device were first thermally and mechanically 
unloaded under the old parameters and then reloaded elastically under the 
new ones. 

The elastic stresses and displacement are given formally by 

(53a - b) 

U PI ( T2 T2) - = E fu v, -, - + aT, 
T TI T 

(53c) 

where 
(2 _ 1 (2 + 1 

frb,() = -2-1' fob,() = -2-1' , - '.-
f( 1")_1-v+(1+v)(2 

u v",.. - ,2 _ 1 

and PI = CTr(Tt}. Let the initial joint pressure be PbO, the intermediate 
one (after the thermal loading) Pb! and the final one (after the thermal 
unloading) Pb2. The displacement of the joint, T = b can be given as 

.. ~-.- ---.- -~ -- .- .~---.-.---~----~~-----
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in the shaft and in the hub, respectively. 
For the sake of convenience, the reference temperature T* is kept to 

be the room temperature, i.e. 

T* = To = 293[K]. 

Equating both displacements, the final joint pressure happens to be 

The difference of the joint pressure is therefore 

b.Pb = Pb2 - Pbl· 

The final stresses are the following: 

where the stress increments b.crr and b.cr8 can be calculated after the sub
stitution of b.Pb into the Eqs. (53a), (53b), respectively. 

Numerical Example 

We consider a shrink fit made from aluminium and copper with the geo
metrical and material parameters given in Table 1 (LIPPMANN, 1990). 

Table 1 
qa = 0.2.5, qb = 1.25 

}'o[!v! Pal mjYo[ljK} E[GPa} 11 o[1jK} 

Shaft .50 5.10-3 68.67 0.3 2.38.10-5 

Hub 130 .1.23. 10-3 113.8 0.35 1.698.10-5 
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The hardening parameters are (MEGAHED, 1991): T/i = 2.5, T/a = 4.24. 
The initial joint pressure is Pbo=17.5 [MPa]. The thermal cycle means a 
homogeneous temperature rise from ilo = 20[°0] to ill = 75[°0] and then 
a cooling from ill = 75[°0] to il2 = ilo = 20[°0]. The comparison of the 
stress distributions with and without hardening can be seen in Fig.l and 
Fig. 2 after the heating and at the end of the thermal cycle, respectively. 
The figures show that the hardening has practically no effect on the stress 
distribution. In both rings plastification occurred. In the shaft the plastic 
zone expands to that radius as far as the hoop stress is constant, while in 
the hub the constant difference of the hoop and the radial stresses shows 
the plastic zone. The joint pressures and the dimensionless plastic radii are 
shown in Table 2. 

Cl 90 a.. 
~_ 75 
'0 

60 

45 

30 

15 

0 

, 

-11 = 0 

x T\ = 0 

I 
I 

--------------------------r-------

Fig. 1. Stress distribution after temperature increase of b.{} = 55°C 

Table 2 

PbI [MPa] Pb2 [MPa] 

T} = 0 0.353 1.168 21.82 15.03 

T} =I 0 0.344 1.169 21.83 15.04 

rIb 
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-1) = 0 

x 1) = 0 

I 

o --- ------ ----------------+- ------
I 

- 15 l::::::::::::=;:::::::::x:s::x::a:a::s::I*f .... 
-30 

-45~--~--~~--~~~~~~--~~~~~~--~~~~-. 
0.25 

rIb 
Fig. 2. Final stress distribution after unloading 

Conclusion 
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In the above example, the maximum temperature difference was small 
enough, therefore, the equivalent plastic strain remained small compared 
to 1. However, the device must not be loaded thermally much more be
cause of the fast full plastification (LIPPMANN, 1990). Therefore, one can 
say that the incorporation of complicated hardening rules into the model is 
not worth the trouble: the loss of stability ensues much sooner than large 
plastic strains could arise which are not negligible. 
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