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Abstract 

In practice, joy-sticks are often used when a human operator controls the motion of a 
machine. The control system provides a kinematical constraint for the controlled machine, 
Le, the position of the joy-stick determines the velocity of the machine with a certain gain. 
The human operator, of course, tries to control the joy-stick position in a way that the 
machine will reach the desired position. The nonlinear mathematical model of this system 
is analyzed in the paper which also involves the human operator's reflex delay. 

Keywords: time delay, neutral functional differential equations, joy-stick control, stability, 
chaos. 

Introduction 

In case of joy-stick control, the position of the joy-stick determines the 
velocity of the controlled machine with a certain gain. The human oper­
ator tries to control the joy-stick position in a way that the machine will 
reach the desired position. The human operator's behaviour can often be 
described by proportional and derivative terms (PD). However, the delay 
of the human operator's reflex has a central role in system stability. If the 
nonlinear spring supporting the joy-stick is not chosen properly, the opera­
tor will not be able to work: robustness or even stability may be adversed, 
vibrations occur, etc. 

This paper presents a nonlinear scalar, first order, neutral functional 
differential equation to model the above described phenomena. Stability 
charts are given and compared in cases of different weight functions with 
respect to the past, and the existence of supercritical Hopf bifurcation is 
proved for some special cases. A parameter domain is also presented where 
the existence of chaos is very likely in the system. 
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Mathematical Model 

Fig. 1 shows the mechanical system in question where q is the position of 
the joy-stick and u is that of the one-degree-of-freedom controlled machine. 
The velocity it is determined by the position q of the joy-stick, K > 0 is 
the constant gain of the control. The spring at the joy-stick has nonlinear 
characteristics described by Q = f(q), where f is odd and analytically in 
the neighbourhood of the origin. Thus, SI = /,(0) > 0 is the stiffness of 
the spring and f(q) = slQ+S3l + .... The control force Q applied by the 
human operator is modelled by 

o 

Q(t) = - J (pu(t+O)+Du(t+ln)d1/(O), 
-00 

where the scalar P and D are the gains at the operator, the dot represents 
the right-hand derivative with respect to the time t, and 1/ is a scalar 
function of bounded variation mapping the interval (-00,0] to the non­
negative reals, and where 

o o 

J d1/ = 1, J e -vII \d1/(B) \ < +00 for some v> O. (1) 
-00 -00 

By means of the function 1/ we may consider different weights of the past 
states of the system. In this way, the delay of the human operator's reflex 
is also involved in the model. 

-q -+--·u 
o o 

?JO===/z ~~ 
v = U = Kq 

Fig. 1. Mechanical model 

Summarizing these elements of the model, we get the scalar equations 

u(t) = Kq(t), 
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o 

SlQ(t)+S3l(t)+ ... = - J (Pu(t+9) + Du(t+9))d-l](9) 
-00 

for the functions Q and u' Using a 3-jet approximation only, we can rear­
range these equations into a scalar neutral functional differential equation 
(NFDE) with respect to u as follows: 

where 

o 

u{t) = - J (JL1u{t + 9) + JL2U{t + 9) )d1]{O) 
-00 

o 3 

+€[J (JL1 u(t+0)+JL2U(t+0))d1](0)] , 
-00 

PK 
JLl = --, 

SI 

DK 
JL2 = --, 

SI 

(2) 

(3) 

In the following section, the asymptotic stability of the zero solution of the 
linear part of (2) will be investigated. In this way, it is not trivial to get any 
conclusion for the asymptotic stability of the zero solution of the nonlinear 
NFDE (2) [1J. However, we shall use special functions 1] in (2) which enable 
us to investigate not only the stability but also the Hopf bifurcation of the 
zero solution of (2). 

The functions 1] we use are 

8/ (9) 8/ (9 92
) 28/T 1]o(O)=e r, 1]1{O)= 1-; eT, 1]2(0)= 1-2;+27"2 e , 

1]00(0) = {O, 0 E (-00, -rJ . 
1, 0 E (-7", OJ 

(4) 

All these functions satisfy the conditions (1). There is a new parameter 
7" > 0 here which can be considered as the measure of the influence of the 
past. The weight functions w = 1]' are 

(ll) _ 40
2 

28/T 
W2,t7 - 3 e , 

7" 
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(5) 

respectively, where WI, W2 and Woo have their maximum values at 0 = -T. 

In engineering, the human operator's reflex delay is usually considered as a 
discrete one, that is 1]00 is used in the model (2). However, the NFDE (2) 
can be transformed into a finite dimensional system of ordinary differential 
equations if 1]j, j = 0, 1, 2 are in use, and it remains infinite dimensional if 
1]00 is applied. 

We refer to the literature [1, 2, 3] regarding the problem of choosing 
the appropriate space of the initial functions of the NFDE (2). 

Stability Analysis 

The characteristic function related to the linear part of the NFDE (2) has 
the form 

o 

D(A) = A + J (Ji-l + Ji-2A)e
Ali

d1](O). (6) 
-00 

It gives polynomials if 1] = 1]j, j = 0, 1, 2, and D remains transcendental if 
1]=1]00: 

Doo(A) = A + Ji-2Ae-).r + Ji-Ie-).r, (7d) 

respectively. In case of Dj, j=O, 1, 2, the Routh-Hurwitz criterion provides 
the necessary and sufficient conditions for the parameters Ji-l T and Ji-2 when 
the characteristic roots have negative real parts. For D oo , the stability 
conditions can directly be deduced from the results in [1, 4] or from a recent 
paper of BOESE [5]. The results are presented in the following statement: 

All the zeros of the characteristic function Dj in (7) have negative 
real parts if and only if 

j=o Ji-l > 0, Ji-2 > -1 ; (8a) 
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j=l: (8b) 

j=2 
2 2 

0< JLIT < 2(1 + JL2) - 9(1 + JL2) j (8c) 

j = 00 0< JLIT < V1- JL~ arccos( -JL2), (8d) 

respectively. 
The stability charts defined by the conditions of this theorem are 

shown in Fig. 2. The better approximation of the discrete delay is used 
in the NFDE (2), the closer the stability limits are to the totally shaded 
central region of Fig. 2. 

-2 , 
Fig. 2. Stability charts 

Hopf Bifurcation 

Let us consider 11 = 171 according to (4) in the NFDE (2). If we introduce 
the new variables Xl, X2 and X3 by the formulae 

XI(t) = u(t), 

o 

X2(t) = J (JL1u(t + 9) + JL2U(t + 9)) (- :2 eO/T
)d9, 

-00 
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o 
2:3(t) = J (JLlU(t + 0) + JL2U(t + 0)) ~l/r dO, 

-00 

then the NFDE (2) can be transformed into a 3-dimensional system of 
ordinary differential equations (see [2, 6]): 

(9) 

The characteristic function of the linear part of (9) is just Dl as shown in 
(7b). The inequalities (8b) give the stability limit 

JLl > 0, (10) 

where D1 has two pure imaginary zeros 

).1,2 = ±iw, w = [iil V?; (11) 

and a negative real one ).3 = -2/1". We can easily choose a bifurcation 
parameter (e. g. JLl or JL2 or 1") in a way that the characteristic roots ).1,2 

cross the imaginary axis with a non-zero velocity. Thus, there is a Hopf 
bifurcation at the critical parameters given by (10). 

If we introduce the new variables Yl, Y2 and Y3 by 

( :~) = (~ _Ow ;) (~~) 
2:3 W

2
1" -w -2 Y3 

then we get the Poincare normal form of Eq. (9) where the parameters are 
fixed at the critical values (10): 

(12) 

Since there are no terms of second degree of the variables, we can easily 
separate the first two equations with Y3 = 0 which describe the flow on the 
two dimensional centre manifold. Applying the ready-made formulae of [6, 
7] to these equations in the centre manifold, we can directly prove that the 
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Hopf bifurcation is supercritical if € > O. This means that orbit ally asymp­
totically stable limit cycle exists around the unstable equilibrium when the 
parameters are close enough to the critical values. As the definition (3) of 
the parameters show, € > 0 yields 53> 0, that is the spring in the model of 
Fig. 1 has hardening characteristics. 

We get the same qualitative result if 1]0 or 1]2 is substituted into the 
NFDE (2). The investigation of the case of 1]00 is more difficult since the 
NFDE (2) remains infinite dimensional. However, if ILl > 0, IL2 = 0, then 
Eq. (2) is a special retarded functional differential equation (RFDE) 

(13) 

it is still infinite dimensional, though. Its linear part is well-known in the 
literature [4, 7]: at the critical parameter ILl7" = 7r/2 (see (Bd) when IL2 =0), 
there are two pure imaginary characteristic roots 

Al,2 = ±iw, 
7r 

w=-
27" 

(14) 

and all the infinitely many other characteristic roots have negative real 
parts. In order to reduce the infinite dimensional RFDE (13) at the critical 
parameters to the two dimensional centre manifold, we can use the operator 
differential equation form of (13) and the linear transformation in the same 
form as it has appeared in [7]. The short calculation results in the two 
dimensional system: 

d (Yl) (0 
dt Y2 = -w 

W Yl + 1r W - 2Y2 + ... 
)() 

2 2( 3 ) 
o . Y2 € 1r2 + 4 --:;: -7rY~ + . . . ' (15) 

where w is given in (14). It has the same structure as the first two equations 
of (12), and we get the same qualitative result: if € > 0 then there is a 
supercritical Hopf bifurcation in the RFDE (13). 

In spite of these results, the original NFDE (2) with T/oo may have 
much more complicated attractors. This will be shown in the following 
section. 

Chaos 

Let us consider the NFDE (2) with T/oo from (4), and let ILl = 0, IL2 i= O. 
Then it has the special form 

(16) 
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It is easy to see that we have got a simple nonlinear iteration with respect 
to some discrete values of it. If 11121 > 1, then it = 0 is unstable. If, in 
addition, f. > 0 also holds, then there are two further trivial solutions for it 
which are also unstable if 11121 is large enough. As it is well-known from the 
literature [8], chaotic iteration may appear for certain parameter domains. 
As a matter of fact, the zero solution of the NFDE (2) with 7}00 has infinitely 
many characteristic roots with positive real parts if 11121 > 1, as shown in 
[4, 5]. These refer to very complicated bifurcation phenomena at III = 0, 
112 =±1. 
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