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Abstract 

This paper considers the effect of a normal force on the torsional vibration of systems. In 
the solution of this problem, a continuum-mechanical examination of the strain exceeding 
the linear theory has an important role. In the first part of the paper this examination 
of the strain will be given, and in the second part the effect of the normal forces to the 
vibration of a torsional system will be considered based on the results of the first part [5J. 
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Examination of the Strain 

Small strains are supposed where the linear theory is generally used. Then 
we may use the strain and stress tensors to describe the state referring to 
the undeformed state of the body. Thus, in the following, the Lagrangian 
strain tensor and the H. Piola-Kirchoff' stress tensor can be used, supposing 
- similarly to the linear theory of elasticity - that the connection between 
these tensors can be given by the Hooke's law [1]. 

Keeping some nonlinear elements of strain, more exact results can be 
prod uced than by the usual linear theory of elasticity. 

It is not necessary to keep all the nonlinearities. In the following, two 
quantities will be considered to be equal if they differ from each other in 
elements which include the third or higher powers of small quantities of 
strain as multipliers. These terms are negligible. 

The continuum-mechanical examinations suppose that the beam has 
neither body forces, nor surface forces but there are normal forces and tor­
sional torque acting on the ends of the beam. Moreover, it is assumed that 
the beam is long enough to have a middle part where it is approximately 
true that during the deformation the cross-sections remain planes, normal 
to the axes and in their planes they deform equally. 
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Co-ordinates and Strain Tensor 

Fig. 1 shows the coordinates R, ~, Z and the basis eR, eq" ez belonging 
to the point P of the beam being in an undeformed state. In this state the 
position vector of point Pis R= ReR + Zez. During the deformation, the 
point P gets to position P' where the co-ordinates of P' are T, rP, z, and 
the coordinates of the displacement are p, Z'l', (. The position vector of 
P' is r. 

R 

Ql 

Z 

r= R+g 
'P= Ql+ ZifJ 

z=Z+5 

Fig. 1. Co-ordinates and basis vectors for undeformed and for deformed state of a tube 

Hence, 

rP = ~ + Z'l', 
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z=Z+(. 

Due to the symmetry and the earlier assumptions referring to the defor­
mation of the cylindrical tube, the displacements are: 

p = peR), 

W = const. 

(= ((Z) = kZ, k = const. 

For the derivatives of the coordinates of the displacements, let us use the 
following notations: 

Bp 
BR = PR, 

B( 
BZ = (z. 

During the deformation, the elementary lengths Si of the coordinate lines 
passing through the point P change to Si, and their originally rectangular 
angles become deformed [3]. 

a. With the help of the arc lengths Si, the basis Gi belonging to the 
undeformed state and the basis gi belonging to the deformed state of 
the beam can be represented as vectors tangent to the line elements. 

b. With the help of Gi and gi we can define the Lagrangianstrain tensor 
required to the examinations: 

1 
H = 2". (g - G), 

where g and G are the metric tensors belonging to the undeformed 
and deformed state of the body, respectively. 

In the following, the strain tensor will be used with some modifica­
tions. 
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if i -:f. k, 

if i = k, 

or 

The modified strain tensor will be denoted by L. The matrix of the strain 
tensor referring to the concrete problem is: 

pR 0 0 

L = 0 p/R (R + 2p)\f! /2 

(R~Z) 
0 (R+2p)\f!/2 R2\f!2/2 + (z 

where 

{Jp 
PR = {JR' 

{J( 
(z = {JZ . 

To get the unknown functions p(R) and «(Z) we have to use the equations 
of the equilibrium, and the boundary conditions. For that reason, we need 
the matrix of stress tensor, too. The elements of the stress tensor are: 

(j 1- v v [P (R2\f!2 )] 
2G = 1 - 2v . PR + 1 - 2v· R + -2 - + (z , 

(j I-v p v [ (R2\f!2 )] 
2G = 1 - 2v . ~ + 1 - 2v· PR + -2 - + (z , 

1"12 = 1"21 = 1"13 = 1"31 = o. 
From the first equation of the equilibrium we get an ordinary linear Euler­
type differential equation for the function p( R): 
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R. PRR + PR _!!.. = __ V_. R2w2 • 
R 1- v 

The general solution of this equation is: 

95 

where ao=v/(l-v), Cl and C2 are constant values which can be computed 
from the boundary conditions. 

If the values of the normal force and the torsional torque are given, the 
unknown values of Wand (z can be obtained from the stress distribution 
functions T23 = T23(R) and 0'"3 = 0'"3 (R), reducing them to the center of the 
cross-section. 

Deformation of a Thin- Walled Cylindrical Tube 

Let us consider an elementary part of a tube being in the equilibrium 
(Fig. 2). The length of it will be dZ and the central angle 2d<p. Supposing 
the quantities depending on the thickness of the tube and also the stress 
functions are to be approximated with its Taylor-series as a function of the 
distance from the middle surface of the tube. The approximation stops at 
the linear terms of the series: 

P = -v7JR, 

W = const. 

where Ro is the middle radius of the tube and 7J is the specific value of 
stretching. 

Deformation of a Solid Cylinder 

In this case, the solution we obtain is formally just the same as before: 

but in this expression we get 
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R 

z 
Fig. 2. An elementary part of a tube in the state of equilibrium 

where R2 is the radius of the cylinder. 
Function p( R) is: 

1 (2 2) RlIO'"03 P = "8 . ao R2 - R . R'I! - ---e- ' 
where 0'"03 is the average value of the tension on the surface. 

On the Properties of Torsional Systems 

Cylindrical Thin- Walled Tube as a Torsional Spring 

First we consider a system that consists of an elastic tube with a disc on its 
end (Fig. 9). Let us denote the length of the tube by l, the mass moment 
of inertia of the disc by J and its mass by m. Let a normal force F and a 
torsional torque M be acting on the disc. 

-
Fig. 3. Torsional vibration system 
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The motions of the disc are supposed to be described by a displacement w 
in the direction of axis z and by a rotation around axis z. The equations 
of the motion of the system can be given with the help of the Lagrangian 
equations [2]. The kinetic energy of the system will be as follows: 

2T = mw2 + Ja? 
Displacement w includes the stretching y caused by the normal force and 
the change of the length of the beam ~ produced by torsion 

w=y+~, 

where €=R21J!2 .1/2=R20:2 /2l, R is the middle radius of the tube. 
For the left side of the Lagrangian equations - keeping only the linear 

terms - we get the following expression: 

i. . (aT) _ aT = my. 
dt ail ay 

We can get the right side of the equations with the help of the expressions 
of the power of internal and external forces: 

PI = -.!. J (j LdV = - IpG . o:a + EA . yy' 
2 =" 1 l' 

(V) 

PE = Ma + F· (y + t) = (M + F~20:) . a + Fy, 

where Ip denotes the polar moment of the cross-section to the center, A is 
the area of the cross-section, E is the Young modulus and G is the modulus 
of rigidity. The general forces are as follows: 

1 2 
Qo: = M - T' (IpG + F R ) . 0:, 

EA 
Qy = F - -1- . y. 

The equations of the motion are: 

Ja + ~. (IpG + F R2) . 0: = M, 

.. EA F 
my+ -1-' Y = . 
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It can be seen that the first equation includes the effect of the normal force 
on the torsional vibrations, but the equation describing the longitudinal 
motion of the system does not change due to the torsion. 

Let us use the following notation in the first equation 

c = IpG + F R2 = IpG . (1 + (j) = c' + c" 
1 1 1 G . 

For the materials commonly used, the value of (j IG cannot exceed 5%. But 
in the case of some kind of plastics, this value can be as high as 30% [4]. 
The equation of the torsional vibration can be written in the usual form: 

Ja + ca: = M, 

where c includes the effect of the normal forces. 

Torsional Vibration of a Shaft Fixed at Both Ends 

Fig. 4 shows an elastic shaft with only one disc on it. The part of the shaft 
denoted '0-1' has the value of stiffness Cl, the other part '1-2' has the value 
of stiffness C2 and the mass moment of inertia of the disc is J. There are 
no external forces or moments acting on the disc. The motion of the disc 
is characterized by the rotation a: around the axis z. 

0" Jr-" .,," .. 2" 

COl C12 

lO1 l12 

/ 

.... 
Fig. 4. Torsional vibration system fixed at both ends 

In that case, the specific change of the '0-1' part of the shaft in the direction 
z would be ~zI, due to the torsion and the specific change of the part '1-2' 
would be ~z2, if the end '2' could move freely. The whole change of the 
shaft caused by the torsion would be as follows: 

Y2z = ~zl h + ~z212 . 

With the help of the specific value of the rotation, this expression can be 
written in the following form: 
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1 2 2 1 2 2 
Y2t = - 2" . R '1' 1 h - 2" . R '1' 2h , 

where '1'1 = (a1 - ao)/h = aI/h, 
'1'2 = (a2 - (1)/12 = a1/12. 

Let us make the end '2' free, but let a normal force F and a torsional 
torque M be acting on this end. The following conditions at the '2' cross­
section have to be satisfied: 

Y2 = 0, 

a2 = O. 

The equation of the motion of the disc is: 

J &. + (Cl + C2) . O! = M , 

where 
F (j =-, 
A 

I 11 JpG Jp 
C2=C2+ C2=Z;-+Z;:' 

C = JpG . (1 + (j) . (! + !) = JpG . (1 + (j) . ! 
G h h G 10 

supposing that the cross-sections of the parts at the shaft are equal. 
To satisfy the given conditions, the value of the stretching caused by 

the normal force acting on the end '2' should be equal to the change of the 
length caused by the torsion 

Y2t = -Y2s, 

Y2s = :A . (h + 12) = ~ (11 + h) . 
From this we can obtain the following expression: 

1 2 2 1 (j = 2" . ER a1 • 10 . (11 + 1
2

) • 

Substituting this value into the equation of the motion, we get: 
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We can see that taking into account the change of the length due to the 
torsion the equation describing the motion of the system is a nonlinear 
differential equation ( Duffing-type). 
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