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Abstract 

This paper deals with the most interesting three dimensional Volterra systems, which 
have first a sign stable interaction matrix. This matrix is stably admissible too. Then we 
consider a balanCi\d interaction matrix, which is not sign stable, because it has a cycle, 
but it is stably admissible, and lost we consider an interesting not stclbly admissible case. 
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1. Introduction 

Paper [1] introduces the concept of sign stability, in which case without the 
exact knowledge of the elements of a matrix we can determine its stability 
behaviour merely from the sign of its elements. Paper [2] deals with the 
concept of stably admissible matrices. Applying this we may determine 
the global asymptotic stability of a solution, or whether some nonconstant 
periodic solutions occur in Lotka-Volterra systems. We illustrate these 
concepts by considering a not too complicated population dynamical model. 
These ideas are of great importance at such models because they may give 
some information about the future of the system without memory the exact 
value of the pa.rameters. 

2. The Survey of the Used References 

Let A=[aij] be an n X n real matrix, and its eigenvalues be Ai, i = 1, ... ,n. 
Def 2.1: A is called stable, if ReAi < 0, for all i = 1, ... ,n. 
Def 2.2: A is called quasi-stable, if ReAi ::; 0, for all i = 1, ... ,n, and it 
has a simple Jordan normal form. 
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Def 2.3: A is called semistable, if ReAi ::; 0, for all i = 1, ... , n. 
Def 2.4: A is called sign stable, sign quasi-stable, sign semistable if each 
matrix B of the same sign-pattern as A (sgn bij =sgnaij for all i, j) is 
stable, quasi-stable, semistable, respectively. 

Let a directed graph D A and an undirected graph G A be attached to 
A as follows: 

The vertex set of D A'is V = {I, ... , n} and its edge set is {(i,j) : i :j:. j 
and aij :j:. O} . The vertex set of G A is V = {I, ... , n} and its edge set is 
{{i,j} : i:j:. j and aij :j:. O:j:. ajd. Let RA = {i : aii :j:. O}. 
Def 2.5: We have an RA-colouring of GA if the next assumptions are 
valid: 

1. each vertex in RA is black; 
2. no black vertex has precisely one white neighbour; 
3. each white vertex has at least one white neighbour. 

Let UM be the set of vertices of edges in G A which have no common 
vertex. 
Def 2.6: V \ RA is called a complete matching if V \ RA C UM is valid. 
Theorelll 2.1: (Jeffties-Klee-v.d. Driessche) A is sign semistable if and 
only if it satisfies the following conditions: 
(a) aii ::; 0 for all i; 
({3) aijaji ::; 0 for all i :j:. j; 
(-y) D A has no k 2: 3 cycle. 

(D A has k 2: 3 cycle, if ai(1)i(2) ... ai(k-l)i(k)ai(k)i(l) :j:. 0 for some sequence 
of k 2: 3 distinct indices i(l), ... , i(k)). 
Theorelll 2.2: (Jeffries-Klee-v.d.Driessche) A is sign stable if and only if 
it satisfies the conditions of Theorem 2.1, and the following two conditions: 

(5) in every RA -colouring of the undirected grp,ph G A all vertices are 
black; 

(c) the graph GA admits a V \ RA-complete matching. 
Theorelll 2.3: (Jeffries-Klee-v.d.Driessche) The sufficient condition of 
A to be a sign quasi-stable matrix is that A satisfies the conditions of 
Theorem 2.1 and A is skew-symmetric in the sense that 
({3*) sgn aji= -sgn aij for all i :j:. j 

(thus aijaji = 0 if and only if aij = aji = 0 for all i :j:. j.) 
The proof of these theorems can be found in [1]. We consider the 

Volterra system: 

n 

Xi = Xj(Cj + I: aijXj), : Xi(O) > 0, : (i = 1 ... , n), (2.1) 
j=l 

where Cj and ajj are real constants. Assume that: 
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aii ~ O,andaijaji < 0 if (i - j)aij f. 0, (i,j = 1. .. ,n). (2.2) 

We suppose that there exists a positive equilibrium point E = (e;) 
such that: 

n 

Ci + L aij e j = 0, (i = 1 . .. , n). 
j=l 

It means that the system (2.1) has the following linearization at E: 

n 

Xi = ei L aijXj. 
j=) 

(Condition (2.2) means that the D A and the G A graphs of the matrix A 
are the same.) 
Def 2.1: A is a perturbation of A, if aii ~ 0 and aij = 0 for i f. j if and 
only if aij = 0; the perturbation is small if 

max aij aij 1 
i,j 

is small. 
Def 2.8: The matrix A is admissible if there exists Pi > ° such that 
(Piaij) ~ 0, i.e. the matrix (Piaij) is negative semidefinite and, in addition, 

n n 

L LPiaijWiWj = ° ===> aiiwi = 0, : i = 1 ... ,n, (W), ... ,wn ) ERn. 
i=1 j=1 

The matrix A is stably admissible if every matrix A obtained by a suffi­
ciently small perturbation of A is admissible. 

Let us denote a cycle ai(J)i(2) ... ai(k-J)i(k)ai(k)i(J) f. ° of the graph GA 

of the matrix A by [i(l), i(2), ... ,i(k)]. 
Def 2.9: The cycle [i(l), i(2), ... ,i(k)] of the matrix A is balanced if 

1 ai(1)i(2)'" ai(k-J)i(k)ai(k)i(1) 1=1 ai(2)i(1)'" ai(k)i(k-I)ai(J)i(k) I· 

Def 2.10: The matrix A is balanced if its cycles are all balanced. 
Now we colour the vertices of graph G A which belong to the set RA 

black but omit the RA -colouring of the graph. 
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Def 2.11: An edge which directly connects two black dots is called a strong 
link. 

See the proof of the following theorems in [2]. 
Theorem 2.4: (Redheffer-Zhiming) If the matrix A is stably admissi­
ble then every cycle in its graph must contain at least one strong link. 
Conversely, if a balanced matrix A has this property then it is stably ad­
missible. 
Def 2.12: We have the reduced graph RA of matrix A if the following 
colouring process is continued till the colours of the vertices cannot be 
changed any more. 

1. All vertices of graph G A which belong to RA are black. 
2. Suppose that vertex i is 'black' ., or 'plus' EB , and all vertices 

adjacent to i are. except the single vertex j. Then we colour j to e . 

3. Suppose there is a e or a EB at i and a e or a EB at the vertex 
adjacent to i except for a single vertex j adjacent to i. Then we put EB at 
j. 

4. Suppose i is 'white' 0, and we have a • or a EB at each vertex j 
adjacent to i. Then we put a EB at i. 

(Preference is always given to e when there is a choice between" and 
EB. See the meaning of this colouring in [1] and [4].) 
Theorem 2.5: (Redheffer-Zhiming) If the graph RA of some stably ad­
missible matrix A has" or EB at every vertex, then the solutions of system 
(2.1) have a limit as t -+ 00 which may depend on the initial conditions. 
If every vertex has • , the limit is independent of the initial conditions. In 
neither case can there be a limit a cycle, a nonconstant periodic solution, 
or a strange attractor. 

(It is easy to see that Theorem 2.5 gives global asymptotic stability.) 

3. The General Model 

Consider the following three dimensional predator-prey system: 

:i: =XF(X'Yl'Y2,K)} 
'!h =y1G1(X,Yl,Y2) 

'!h =Y2G2(X, Yl, Y2) 

(3.1) 

where F, Gi E Cl: (i = 1,2) and Yi(t) is the quantity of predator i at 
time t, (i = 1,2) and assume that the two predators are competing for the 
prey x(t). (Denote Fx(x, Yl, Y2, K) = 8F(x, Yl, Y2, K)/8x,etc.) The natural 
rules induce the following conditions: Assume that there exists a positive 
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equilibrium point E = (xo, YIO, Y20) namely F(E, K) = Gi(E) = 0, i = 1,2. 
and that 

(x - K)F(x, 0, 0, K) < 0, x#- K, Fyi(X, YI, Y2, K) < 0, x > O(i = 1,2), 
(3.2) 

Gi(0,YI,Y2) < 0,Giyi(X,YI,Y2):::; 0,Glx(X,YI,Y2) > 0,G2x(X,YI,Y2) > 0, 
(3.3) 

(x, YI, Y2) E IntR~, (i = 1,2), 

F(O, 0, 0, K) > 0, F(K, 0, 0, K) = 0. (3.4) 

(See in [3]). Linearize the system (3.1) in the equilibrium point E. The 
coefficient matrix A of the linear system is: (all functions are to be taken 
at E). 

A=[ 
xoFx 

YIOGl x 
Y20G2x 

XOFyl 
YIOGl yl 
Y20G2yl 

(3.5) 

Our problem is under what conditions will the matrix A be stable, namely 
what can we say about the behaviour of solutions. The characteristic poly­
nomial is: 

D().)=).3 - ).2[xoFx + YIOGlyl + Y2oG2y2] 
-).[xoYlo(Fy1 G1x - FxGlyd + xOY2o(Fy2G2x - FxG2y2)+ 
YIOY20 (Gl y2 G2yl - Glyl G2y2)] - det A. (3.6) 

Let us denote the coefficients of the constant, linear and quadratic terms 
of the characteristic polynomial by ao, aI, a2, respectively. The Hurwitz 
determinant of the polynomial is: 

a2 al - ao = X5YIOFx(FylGl X - FxG1yI) + X5Y20Fx(Fy2G2x - FxG2y2) 
2 2 

+ XOY20 Glyl (Fyl Gl x - FxGl y1 ) + YlOY20G lyl (Glyl G2yl - Glyl G2y2) 

+ xOyiOG2y2 (Fy2 G2x - FxG2y2) + YlOyiOG2y2(Gl yl G2yl - Glyl G2y2)+ 

XOYIOY20( -FxG1yl G2y2 - FxG1yl G2y2 + Fyl Gl y2G2x + Fy2Gl xG2yl)(3.7) 

Finally, A is stable (according to the well-known Hurwitz criteria) if and 
only if: 
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and the H urwitz determinant 

(3.8) 

Now, we shall proceed to the study of concrete models. We start with 
the easiest but biologically meaningful matrix A, and then treat a more 
complicated case. We are going to study the stability conditions in all cases 
using the methods of Section 2. 

4. The Stability Behaviour of the Different Models 

In this section first we will present the matrix A with its graph, then 
we are going to reach the conclusions and support them with the study of 
Hurwitz criteria. 

4.1 Let the system be: 

X=XF(Yl,Y2) } 
'!h = YIGl(X,yJ) 

'!h = Y2G2(X) 

( 4.1) 

This is the simplest model, which is biologically rational. This model can 
have a positive equilibrium point E. There is no intraspecific competition 
in prey, no interspecific competition between predators, no intraspecific 
competition in G2, because F, Gi, G2 is independent of x, Yj(j :f. i), Y2 re­
spectively. The coefficient matrix A of the system linearized at Eis: 

A=[ 
The graph DA = GA is: 

It is easy to see that the matrix A satisfies the conditions of Theorem 
2.2, hence A is sign stable. (Of course the case G1yl = 0 and G2y2 =1= 0 
is the same.) By the way, if the characteristic polynomial is denoted by 
D()") = ).,3+ C2 ).,2+ CI ).,+co, it can easily be seen from (3.6) that Ci > O,Ci E 
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R, and the Hurwitz determinant (3.7) is also positive. This means that the 
system has a stable focus or a stable node. The graph RA of the matrix A 
IS: 

We get this by applying first, the second point of Definition 2.12 to 
vertex 2 then to vertex 1. Thus, we can apply the Theorem 2.5 and see 
that E is a globally asymptotically stable equilibrium point of the linear 
system, furthermore, it is globally asymptotically stable of the nonlinear 
system if it is a Volterra one. 

4.2 Let the system be now: 

:i: =XF(Yl, Y2) } 
Jh =Yl G1 (x, yJ) 

J12 =Y2G2(X, Y2) 

( 4.2) 

There is no intraspecific competition in prey and no interspecific com­
petition between predators apart from the fact that they both eat the same 
prey. The coefficient matrix A of the system linearized at Eis: 

A=[ 
The graph DA = GA is: 

XOFy2 
o 

Y20G2y2 1 

It is easy to see that we can say the same as in case 4.1. (All vertices 
of the graph RA are black: we have to apply the 2 nd point of Definition 
2.12 to vertex 2 or 3 of the graph GA .) 

4.3 Let the system be: 

:i: =XF(X,Yl,Y2)} 
?h =Y1 Gl (x, Yl) 

'lh =Y2G2(X) 

(4.3) 
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There is no interspecific competition between predators. The coefficient 
matrix A of the system linearized at Eis: 

xoFx 
Yl0 Glx 

Y20 G2x 

XOFy2 

o 
o 1 

(See the detailed study of this case by Ljapunov function in [3]). The graph 
DA == GA is: 

The matrix A is sign stable in this case. It would be sign stable also 
if we had G 1y1 :::: 0 and G2y2 i= O. 

(It is easy to see that the matrices in case 4.1 and 4.2 are also sign 
stable). All vertices of the graph RA of the matrix A are black: apply the 
2nd point. of Definition 2.12 to the vertex 1 of the graph GA . Thus the 
solutions are globally asymptotically stable if it is a Volterra system. Thus 
we get the following theorems: 
Theorem 4.1: If the system (3.1) satisfies the conditions (3.2)-(3.4) and 
Fx ~ 0, GIYl + G~Y2 > 0 and the graph D A == G A has not got any cycle 
then (3.5) is sign stable. Furthermore, if the system is a Volterra one then 
E is globally asymptotically stable. 
Theorem 4.2: A system satisfies the Theorem 4.1 if it is a (4.1) or a (4.2) 
or a (4.3). 

Remark: There are some other systems which satisfy the Theorem 
4.1, but these three are the most important according to their graphs. 

The matrix A occurring in case 4.1-4.3 are stably admissible (see 
Theorem 2.4). We may get some other stably admissible cases when the 
graph G A has a cycle. Let us consider these cases: 
4.4 Let the system be the most general, thus the coefficient matrix A of 
the linear system is (3.5) where Gl y2G2yl < O. The graph D A = G A is: 

Here we cannot satisfy condition (-y) of Theorem 2.1, i.e. this cannot 
be a sign semistable case. In order to guarantee some stability (which of 
course depends on the effective values of the elements of the matrix) let A 
be balanced, therefore: 
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1 Fyl Gl y2G2x 1=1 Gl x G2ylFy2 1 . (4.4) 

Then from (3.6) we get: D()") = )..3 +C2)..2 +cI)..-det A, where Ci > O,Ci E 
R, i = 1,2. It is easy to see that the det AiO if (4.4) is satisfied. Also 
there holds the Hurwitz criterion (3.8). Thus A is stable in this case (but 
not signstable). Since the matrix A is stably admissible, then, because 
of Theorem 2.5, the equilibrium point of (3.1) is globally asymptotically 
stable, if the system is a Volterra one. The same holds if Fe "# 0 and 
Gl yl "# 0 but G2y2 = 0, or Fx "# 0 and G2y2 "# 0 but G lyl = 0, or 
Fx = 0 and Giyi "# O(i = 1,2). In these cases the matrix A remains stably 
admissible because the graph G A - after colouring its vertices which belong 
to set RA - has a strong link. Thus we get the following graph: 

But we can colour the white vertex of this graph black, if we apply 
the 2nd point of Definition 2.12. Then applying Theorem 2.5, we get the 
previous result, i.e.: 
Theorem 4.3: If the system (3.1) satisfies the conditions (3.2)-(3.4) Fx ::; 

o and (4.4), and two out of the quantities F x , G lyl , G2y2 do not vanish, 
then E is a globally asymptotically stable equilibrium point if the system 
is a Volterra one. 

We worked out the biologically possible stably admissible cases. VVe 
shall examine one more matrix which is not stably admissible, nevertheless 
we can guarantee stability under certain conditions. 
4.5 Let the coefficient matrix A of the system linearized at E be: 

A=[ 
xoFx XOFyl XOFy2 

YIOG1x YlOG1yl YIOG1y2 
Y2oG2x 0 Y20G2y2 1 

( 4.5) 

and 5 = YIOGl y2 "# O. We want to illustrate that the stability, obviously, 
depends on that how small I 5 I remains. It is clear from (3.6) that: 
D()") = )..3 + C2)..2 + Cl).. - detA(5), where Ci > 0, Ci E R, i = 1,2. It is 
easy to see that if 5 > 0 then det A( 5) < O. Then the stability depends 
on whether the Hurwitz determinant is positive or not. If 5 < 0 then the 
Hurwitz determinant (3.7) is positive. Then the stability depends on the 
condition det A(5) < O. Thus, we get from these two conditions about 5 
the following theorem. 
Theorem 4.4: The matrix (4.5) satisfying the conditions (3.2)-(3.4) is 
stable if 51 < 5 < 52, and 51 < 0,52 > 0, where: 
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1 1 
82 = F G [(xoFx + YI0G1yI)(YlO) 

XOY20 yl 2x 

{XO(FYIGIx - FxGlyl) - Y20(Gl yIG2y2)}+ 

(xoFx +Y20G2y2)(Y20){Xo(Fy2G2x - FxG2y2) - YI0(Gl yIG2y2)}]. 

Corollary: If 8 = 81 then det A = 0, there is an eigenvalue )'1 = O. If 8 = 82, 
then the Hurwitz determinant is equal to zero, then the real part of the 
complex conjugate rootpair vanishes. Thus in case 8 = 82 an Andronov­
Hopf bifurcation occurs. 
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