THEORETISCHE UNTERSUCHUNG DER SCHLEIFSCHEIBENSTANDZEIT MIT DIMENSIONSANALYSE UND IHRE PRAKTISCHEN FOLGERUNGEN

I. Kalászi

Institut für Fertigungstechnik Technische Universität, H-1521, Budapest, Eingegangen am 28. Januar, 1988

Abstract

For avoiding the great scatterings at the practical application of the at present proposed T-Z equations the author studied theoretically by dimension analysis the grinding wheel tool life and examined its practical consequences.

1. Einleitung

Auf zwei bemerkenswerte Voraussagen der internationalen technologischen Trendanalysen (1) wird hingewiesen:

 im Jahre 2000 werden die Schleifarbeiten die Hälfte sämtlicher mechanisierter Bearbeitungen darstellen;

 in 1990 wird es möglich sein, die Ausgangsparameter des Schleifens für alle Werkstoffe, Schleifscheiben und Schleifmaschinen auf theoretisch exakte anzugeben.

Während die erste Voraussage annehmbar scheint, zeigt sich die zweite — jetzt bereits nicht mehr als zwei Jahre früher — kaum wahrscheinlich, besonders bei Beachtung der Gleichungen der Scheibenstandzeit sowie der Vielfältigkeit der Schleifkörner; laut dem in den USA üblichen "FI-Index" (friebility index) sind in der Welt mehr als zehn Al_2O_3 Körnchentype bekannt, die vom Herstellungsort und der Technologie abhängig sind. Übrigens hat jeder Hersteller sein eigenes Geheimnis für die gute Scheibenherstellung. In dieser Tatsache liegt der Grund dafür, daß in den bisherigen Publikationen, Handbüchern und Normenberechnungstabellen für Schleifen zahlreiche Standzeitsgleichungen empfohlen werden. Alle Gleichungen beziehen sich aber auf einen beschränkten technologischen Bereich und zeigen bei gleichen Bedingungen bedeutende Streuungen auf, im Falle die Paarung der Werkstoffe und der Schleifscheiben bei Aufstellung der Gleichung und bei dem Hersteller unterschiedlich sind. Wahrscheinlich in Kenntnis dieser Schwierigkeiten, durch die eine zufriedenstellende theoretische Lösung unmöglich gemacht wird und bei Nichtbeachtung der Trendanalysen wurden durch INFOSS (2) für die in der BRD üblichen Scheiben und meistens eingesetzten Metallwerkstoffe, mit großem Kostenaufwand, die Standzeitgleichungen der Schleifscheiben erarbeitet. Zahlreiche Gleichungen wurden auch von ungarischen Forschern aufgestellt. Ihre Widersprüche haben sich aber erst bei Einleitung der EDV-Projektierung des technologischen Prozesses (CAM) vom Schleifen herausgestellt, als die erhaltenen Angaben wegen ihrer Nichtübereinstimmung mit den tatsächlichen praktischen Standzeiten von den Betrieben wiederholt beanstandet wurden.

Die Zielsetzung des Verfassers in diesem Beitrag ist keinesfalls eine neue, allgemeingültige Standzeitgleichung zu bieten, sondern zu überprüfen, ob sich eigentlich einen Ausweg gibt. Es wird schon imvoraus betont, daß die theoretischen Überlegungen des Verfassers zu einer negativen Antwort geführt haben. Deswegen sollen kurzzeitige Verfahren mit geringem Kostenaufwand, jedoch mit praktisch annehmbarer Genauigkeit zur Aufstellung der Standzeitgleichungen gesucht werden. Der Verfasser wünscht in diesem Beitrag diese Notwendigkeit zu beweisen und zur schnellen und ökonomischen Bestimmung der für die verschiedenen Werkstoff-Scheiben-Paarungen spezifischen Beziehungen einen Vorschlag zu machen, die von ihm als T-Z Gleichungen bezeichnet sind. ("Z" stellt eine unabhängige Variable dar, charakteristisch für die Scheibenbelastung, zur Bezeichnung des Zeitspannungsvolumens in mm³/mm, min; die Gleichung wird in der Regel in Form $T_s \cdot f(Z) = C$ aufgestellt).

2. Theoretische Grundlagen*

Wie bekannt, wird das Ergebnis des Schleifprozesses von mehr als 30 Variablen beeinflußt. Ebenso ist es bekannt, daß zwischen dem Verschleiß und der Standzeit der Scheibe nachweisbare physische Beziehungen bestehen müssen. In einer, vor kurzer Zeit durchgeführten Forschungsarbeit des Verfassers (3) wurde ein neues Modell für den Aufbau der Scheiben gebildet, mit Hilfe dessen *der Betrieb der Scheiben stochastisch geprüft wurde*. Im Wesen wird die Idee von KOLOC (4) weiterentwickelt; die Scheibe "im Betrieb" wird als eine, aus sphärischen Körnchen bestehende Einheit betrachtet. Diese Annahme wurde durch eine große Anzahl von Verschleißversuchen, auf Grund des vom Verfasser als "volumetrischer Verschleiß" bezeichneten physischen Prinzipes unterstützt.

Die ersten Versuche des Verfaßers vor mehr als zehn Jahren hatten noch keine eindeutigen Ergebnisse zum Resultat (5). Nur durch mehrjährige Forschungen war es möglich, nachweisbare gute Erfolge zu erzielen. Im Laufe der weiteren Versuche ist es aber mit dem neuen Modell gelungen, die für die zerspanenden Scheibenkör-

^{*} Bemerkung: Alle folgenden Bezeichnungen nach (14).

ner charakteristische physische Gleichung für den Verschleißbereich aufzuschreiben, wo der Verschleiß gleichmäßig ist, kein Selbstschärfen stattfindet oder der katastrophale Verschleißzustand noch nicht aufgetreten ist. D. h. bis zur Belastung $Z \leq Z_{krit}$, bei der sich der Charakter des Verschleißmechanismus verändert.

Laut Abb. 1:

$$V_s = C_w F_n l_K \mu \tag{1}$$

wo:

 V_s = Verschleiß der Scheiben (in Volumeneinheiten angegeben)

- F_n = spezifische normale Kraftkomponente, erregt zwischen der Scheibe und dem Werkstück (N/mm)
- l_{K} = Weg eines Körnchens im Metall binnen einem gegebenen Zeitraum (in spezifischen Längeneinheiten)
- μ = Reibungskoeffizient zwischen dem Metall und der Scheibe
- $C_w =$ Versuchskonstante.

Bild 1. Verschleißmodell beim Schleifen nach der Hypothese des Verfassers (3)

Da bei einem eingestellten Wert "Z" die Werkzeugsumdrehung n_s unverändert (praktisch konstant) bleibt, besteht der Zusammenhang $n_s \cdot l_K = l$ (z. B. in Einheiten mm/min), vorausgesetzt, daß l_K den Bogen darstellt, der vom Korn im drehenden Werkstück bei einer Umdrehung beschrieben wird; deshalb falls der Scheibendurchmesser d_s bekannt ist (mm), läßt sich die Gleichung mit den für den Schleifbetrieb charakteristischen Parametern aufschreiben:

$$V_{s} = C_{w} F_{n} \mu l_{K} \frac{v_{s} \cdot 6000}{d_{s} \pi} = C_{w}^{*} F_{n} l_{K} \frac{v_{s}}{d_{s}} (\text{mm}^{3}/\text{min}).$$
(2)

Aus Gleichung (2) folgt

- ein erhöhter Kornverschleiß bei größerer Kraft F_n (beim Schleifen mit höherem Wert Z):
- ein erhöhter Kornverschleiß bei höherer Geschwindigkeit v_s (falls das Geschwindigkeitsverhältnis q unverändert ist);

- ein erhöhter Kornverschlei
 ß bei höherer Geschwindigkeit des Werkst
 ückes (höherer Wert "l_κ");
- ein geringerer Kornverschleiß bei Vergrößerung des Scheibendurchmeßers (d_s) ;
- ein geringerer Kornverschleiß bei Verminderung des Wertes " μ " (z. B. falls Kühl-Schmiermittel verwendet werden).

Da diese Folgerungen durch praktische Erfahrungen bewiesen sind, dient Gleichung (2) als geeigneter Ausgangspunkt zur Dimensionsanalyse. Zwecks Vereinfachung der Ausführungen wird natürlich nur das Einstechschleifen behandelt.

3. Dimensionsanalyse auf Grund der Gleichung (2)

Nach Wissen des Verfassers wurde dieser Versuch bis zum Vorlegen seiner Dissertation nicht durchgeführt.

Im Interesse einer Dimensionanalyse der Gleichung $T_s \cdot f(x) = C$ mit gutem Erfolg wird bei Benützung der Gleichung (2) die entsprechende unabhängige Variable "x" gewählt. Heutzutage wird von meisten Forschern — nach einer Vielfalt von Umwegen — das Zeitspanvolumen Z als unabhängige Variable der empirisch aufgestellten Standzeitgleichungen intuitiv gewählt (mm³ · mm⁻¹ · min⁻¹ oder mm³ · mm⁻¹ · sec⁻¹), (6, 7, 8). Auch der Verfasser hat diese Wahl bei mehreren Industrieaufgaben als die beste geeignet gefunden (9).

Wie aus den Metall-Metall-Verschleißversuchen offensichtlich ist, bewirkt die Erhöhung der Verschleißgeschwindigkeit nicht nur die Verlängerung des Verschleißweges, sondern auch eine Steigerung der Temperatur, die zwischen den Reibflächen

Bild 2. Allgemeine Scheibenstandzeit-Kurven (T-Z Kurven) in Abhängigkeit vom Zeitspanvolumen Z (siehe im Text)

entsteht. Die physischen und chemischen Prozesse, die sich bei Paarungen verschiedener Schleifkörper und Metalle abspielen, sind noch nicht geklärt, wie aber aus Erfahrungen bekannt ist, erleiden die Körner einen "Wärmeschock", d. h. an ihren Mikroschichten tritt in einer sehr kurzen Strecke der Vollumdrehung der Scheibe eine Erhitzung auf, die sich in der weiteren Strecke der Umdrehung in der Luft (oder in einem anderen Medium) wieder abkühlt. Dagegen ist das Werkstück einer starken Erwärmung ausgesetzt ohne sich rasch abkühlen zu können; diese Erscheinung hat unbedingt einen Einfluß auf den Anfangswärmeimpuls, der dem Korn im Moment seiner Eindringung in den Werkstoff zugeführt wird. Als Folge dieses Wechselprozesses tritt in der Temperatur bei der Paarung der Ausgleichszustand (Aequilibrium) im Bruchteil einer Sekunde auf (kann als "quasi stationär" betrachtet werden).

Die Rolle der Wärme wird auch durch die Praxis bewiesen. Es ist nämlich bekannt, daß sich beim Schleifen von Metal-legierungen mit schlechter Wärmeleitfähigkeit (z. B. Ni, Ti) der Kornverschleiß auch auf das Mehrfache steigern kann (10), obwohl der Wert Z unverändert bleibt, demzufolge wird mit sehr kurzen Standzeiten gearbeitet Solch eine Standzeitverminderung würde nur wegen der grösseren Kornbelastung selbst nicht vorkommen.

Bei Inbetrachtnahme der bisherigen Überlegungen sind die physischen Faktoren zusammenzufassen, die auf die Standzeit eine Wirkung haben nämlich:

- die Temperatur des Werkstückes,
- die spezifische normale Kraft, durch die der Korn belastet wird,
- die Geschwindigkeit der Volumentrennung vom Werkstück, die gleichzeitig auch die Wärme und Kraft beeinflußt,
- der Reibungsweg, der von der Scheibengeschwindigkeit v_s abhängig ist,
- der Wärmeverteilungs-Koeffizient $\lambda \cdot c_p$ (in der englischen Literatur als "heat value" bezeichnet), der vom Werkstückstoff abhängig ist und die Wärmeverteilung am Werkstück, demzufolge auch die Erhitzung der Körner beeinflußt.

Zusammen mit der Scheibenstandzeit " T_s " gibt es also insgesamt 6 physische Variablen. Nach der Mathematik der Dimensionsanalyse sollen im Falle von 6 Variablen in jeder Gleichung Q_1 und Q_2 je fünf Variablen angegeben werden. Es wird empfohlen, diese in einer Tabelle zu veranschaulichen (s. Tab. 1):

Von der obigen Tabelle ausgegangen ist es schon möglich, die Gleichungen Q_1 und Q_2 für die Dimensionanalyse mit Exponenten aufzuschreiben, d. h.

$$Q_1 = F_n^a \cdot Z^b \cdot v_s^c \cdot H^d \cdot T_s^1 \tag{3}$$

$$Q_2 = F_n^e \cdot Z^f \cdot v_s^g \cdot H^i \cdot \tau^1 \tag{4}$$

wo die Exponenten a, b, c, d, e, f, g, i nocht unbekannte Werte sind.

Die weitere Ableitung ist dem Abschnitt A des Anhanges zu entnehmen, wobei die ausgewählten physischen Größen in den Gleichungen (3) und (4) mit Dimensionen ersetzt und dann die gegebenen gemeinsamen Dimensionen zur Potenz er-

Variable	Symbol	Dimension	Gleich Q1	nung* Q2
Temperatur des Werkstückes	τ	Θ	<u> </u>	
Standzeit der Scheibe	T_s	T	-+ -	
S pezifische Kraft	F_n	$ML^{-1}T^{-2}$	+	
Geschwindigkeit der Volumenabtrennung	Z	$L^{3}T^{-1}$	+	+
S cheibengeschwindigkeit	v _s	LT^{-1}	+	+
Wärmeverteilung $(\lambda \cdot c)^{**}$	H	$M^2T^{-5}Q^{-2}$	+	+

Tabelle 1

Bemerkungen:

* Wenn das Symbol "+" variabel ist, wird es in der angegebenen Gleichung angeführt;
wenn das Symbol "-" variabel ist, wird es in der gegebenen Gleichung nicht angeführt
** Ableitung der Wärmeverteilung: im Anhang, Punkt B.

höht werden. Da dimensionslose Größen zu erhalten sind, müssen die Gleichungen der aufgeschriebenen Exponenten gleich 0 sein.

Schließlich gelangen wir zur folgenden Beziehung:

$$Q_1 = C_T Q_2^{m_D} \tag{5}$$

so (siehe den Angang, Abschnitt A)

$$Q_1 = Z^{-0,5} \cdot v_s^{1,5} \cdot T_s \tag{6}$$

und

$$Q_2 = F_n^{-1} \cdot Z^{-1/4} \cdot v^{-1/4} \cdot H^{0,5} \cdot \tau.$$
(7)

In Gleichung (5) sind C_T und der Exponent m_D noch unbekannt. Gleichzeitig ist es laut Gleichung (5) möglich, durch Potenzierung der Gleichung Q_2 auf m_D die Beziehung zwischen Q_1 und Q_2 zu ermitteln. Sei Q_2 durch Gleichung (7) ersetzt und die Potenzierung auf m_D durchgeführt. So ergibt sich nach Umordnung der Gleichung (5) zur Temperatur " τ " die Gleichung

$$\tau = \frac{C_T}{H^{0,5}} F_n Z^{(0,25-0,5_{m_D})} v_s^{(0,25+1,5m_D)} T_s^{m_D}.$$
(8)

Eines der wichtigsten Ergebnisse der Analyse, die Temperaturgleichung des Schleifens liegt also vor. Falls in dieser Gleichung zur Vermeidung des Oberflächenbrennens vom Werkstück " τ " $\leq C$ (konst.) und die Gleichung (8) zum Wert T_s umgeordnet und, die Potenzierung mit dem aus der Dimensionsanalyse erhaltenen Exponenten durchgeführt wird, sind wir bereits im Besitz der Scheibenstandzeit-Gleichung, in der die physischen Größen, an den angegebenen Exponenten ermittelt,

als dimensionslose Größen anzunehmen sind, d. h.:

$$T_{s} = \left[\frac{C \cdot H^{0,5}}{C_{T}^{*}}\right]^{1/m_{D}} \frac{1}{(Z) \frac{(0,25 - 0,5m_{D})}{m_{D}} (F_{n})^{1/m_{D}}}.$$
(9)

Diese Gleichung (9) ist jedoch noch unnützbar; vorher muß der Wert m_D (vom Verfasser als "Dimensionsexponent" bezeichnet) *empirisch* ermittelt werden, wobei die berechneten Werte in der Gleichung Q_1 , bzw. Q_2 in log—log Diagramm aufgenommen und die zusammenhängenden Punkte mit einer Gerade angenähert werden. Der Wert m_D wird durch den Neigungswinkel (Tangent) dieser Gerade bestimmt. Die Darstellung mehrerer Versuchsergebnisse wird empfohlen, damit *der gesuchte Exponentenwert einen guten Mittelwert geben kann.*

Zur gestellten Aufgabe werden im weiteren die Ergebnisse von einer der Versuchsreihen von OPITZ und FRANK [6] unter den nachstehenden Bedingungen benützt:

- für Q_2 : $\tau \leq 300$ °C (573 °K) und $v_s = 28$ m/sec⁻¹, von denen der letzte Wert während der ganzen Versuchsreihe konstant ist und daher
- in der Gleichung für Q_1 : $v_s^{1,5}=148,16=$ konstant.

So ergibt sich eine der Gleichungen zum Diagramm:

$$Q_2 = \frac{H^{0,5}}{v_s^{0,25} \cdot F_n \cdot Z^{0,25}} = \frac{8,6 \cdot 300}{2,3 \cdot F_n \cdot Z^{0,25}} = \frac{1122,74}{F_n \cdot Z^{0,25}}.$$
 (10)

Die Ermittlung des Wertes $H^{0,5}=8,6$ befindet sich im Abschnitt C des Anhanges. Die andere Gleichung ist:

$$Q_1 = 148, 2 \frac{T_s}{Z^{0,5}}.$$
 (11)

Es ist zweckmäßig, die mit den Gleichungen (10) und (11) ermittelten physischen Größen Q_1 und Q_2 in Abhängigkeit vom Z_i in Tafelform anzugeben (s. Tab. 2):

Während zur Ermittlung der T_s -Werte in Tab. 2 die empirische T_s-Z Standzeitkurve von OPITZ und FRANK als Basis diente, mußten die spezifischen Kräfte F_n (da diese von den obigen Forschern nicht angegeben wurden) auf Grund der Kraftgleichung nach Masslow [11] laut den gegebenen technologischen Kennzeichen ermittelt werden.

Durch graphische Analyse des mit den Angaben der Tab. 2 aufgestellten loglog Diagrammes läßt sich der Wert

$$m_D = 0.34$$

ermitteln. Mit diesem Wert nimmt Gleichung (9) die nachstehende Form auf:

$$T_s = \frac{C}{Z^{0,23} \cdot F_n^{3,13}}.$$
 (12)

a [mm/U]	$\begin{bmatrix} Z \\ \frac{mm^3}{mm, min} \end{bmatrix}$	Z ^{0,25}	$Z^{0,5}$	<i>T_s</i> * (min)	<i>F_n</i> ** (kp/mm)	$F_n Z^{0,25}$	Q_1	<i>Q</i> ₂
0,0026	46,80	2,62	6,84	25	0,286	0,742	541,52	1511,78
0,0033	59,40	2,78	7,71	18	0,330	0,917	435,90	1222,28
0,0077	138,60	3,43	11,77	3	0,549	1,883	37,76	595,72
0,0130	234	3,91	15,29	1	0,752	2,940	9,38	381,54
0,0180	324	4,25	18,00	0,4	0,915	3,889	3,29	288,43

Tabelle	e 2
---------	-----

Bemerkungen:

* Die Werte T_s wurden der Standzeitkurve nach OPITZ-FRANK entnommen.

** Die Kraft wurde nach Massiow für eine Schleiflänge b=30 mm berechnet, daraus folgt, wenn $F_n/F_z=1,7$ (aufgenommener Wert):

 $\frac{F_r}{30} \cdot 1,7 = F_n(\text{kp/mm}).$

Bild 3. Numerische Lösung vom Dimensionexponenten m_D aus den Gleichungen Q_1 und Q_2 (siehe im Text)

Im Rahmen der bereits erwähnten Forschungsarbeiten (3) wurden vom Verfasser viele eigene und von anderen Forschern übernommene $F_n=f(Z)$ Funktionen studiert. Es wurde festgestellt, daß die Regressionsfunktion $F_n=C_{F_n} \cdot Z^n$ benützbar ist; der Wert *n* kann zwischen 0,6 und 0.9 liegen (werkstoffbedingt). Der gute Mittelwert: n=0.75. So wird nach den bisher empirisch erhaltenen T-Z Gleichungen die folgende theoretische Gleichung aufgestellt:

$$T_s = \frac{C^*}{Z^{0,28} \cdot Z^{0,75}} = \frac{C^*}{Z^{0,97}} = \frac{C^*}{Z^s}.$$
 (13)

Das bedeutet, daß mittels der Dimensionsanalyse eine sogenannte T-Z Gleichung erzielt wurde. Der Wert s hängt leider von den Bedingungen ab. Also kein Wert s mit allgemeiner Gültigkeit existiert!

4. Ursachen der Unterschiede zwischen den Exponenten "s" in der unabhängigen Variable Z der T-Z Gleichungen

Die Ausführungen in Abschnitt 3 führten zur Folgerung, daß der Exponent der unabhängigen Variable Z in den T-Z Scheibenstandzeitgleichungen der Funktion

$$s = (s_1 + s_2) = \frac{0.25 - 0.5m_D}{m_D} + \frac{n}{m_D}$$
(14)

gleich ist, wo m_D den durch Dimensionsanalyse erhaltenen Wert darstellt, während der Exponent *n* für die Kraftgleichung charakteristisch ist.

Falls Gleichung (14) auf die beschriebene Weise auf zwei Glieder getrennt, d. h. Beziehung $s=s_1+s_2$ angenommen wird, können die folgenden festgestellt werden:

Der Höchstwert von m_D kann nicht 0,5 betragen, da sonst der Exponent s_1 ohne Erläuterung bleibt. Ebenso kann der Exponent der Dimension nicht 0 sein, da ein unendlicher Wert s_1 sinnlos wäre. Bei Annahme, daß sich m_D zwischen 0,1 und 0,48 verändern kann (vom Wärmeäquivalenten "H" des abgeschliffenen Metalls abhängig), dann wird s_1 zwischen den Grenzen

$$[s_1]_{\max} = \frac{0,25 - 0,5 \cdot 0,1}{0,1} = \frac{0,20}{0,10} = 2$$

$$[s_1]_{\min} = \frac{0,25 - 0,5 \cdot 0,48}{0,48} = \frac{0,01}{0,48} \approx 0,02$$
 (15)

liegen.

und

Bild 4. Der wahrscheinliche 1/m Exponentbereich der in Form $T=C/Z^{1/m}$ gegebenen Scheibenstandzeit-Gleichungen (siehe im Text)

Für das andere Glied, d. h. s2 gilt:

bzw.

$$[s_{2}]_{\max} = \frac{0.9}{0.1} = 9 \\ [s_{2}]_{\min} = \frac{0.60}{0.48} = 1.2 \end{cases}$$
(16)

٦

Durch Addierung der Höchst- und Mindestwerte nach den Gleichungen (15) und (16) wird für *s* geschrieben:

$$[s]_{\max} = 2 + 9 = 11 [s]_{\min} = 0,02 + 1,2 = 1,22$$
 (17)

So ist ersichtlich, daß sich der Exponent s der unabhängigen Variable Z in Gleichung (13) im Sinne der Gleichung (17) zwischen den Grenzen 1,22 und 11,0 bloß theoretisch verändert. Die empirischen Standzeitgleichungen zahlreicher Forscher wurden vom Verfasser studiert. Tab. 3 gibt eine Übersicht über einige der wichtigsten.

Tabelle 3

Ref. No. in Literatur	Exponent m_D	
(7)	1,1	
(11)	1,59	
(6)	2,4	
(3)	1,56	
	Ref. No. in Literatur (7) (11) (6) (3)	

Höchstwahrscheinlich liegt also "s" im Bereich 1,1-2,5. Dies bedeutet, daß vom Koeffizienten $H = \lambda \cdot C$ des abgeschliffenen Metalls abhängig: $m_n = 0, 3 - 0, 4$.

5. Kurzfassung, praktische Folgerungen

- Es ist bewiesen, daß die nach der unabhängigen Variable Z empirisch aufgestellten T-Z Gleichungen der Scheibenstandzeit theoretisch richtig sind.
- T-Z Gleichungen für Universalanwendung können jedoch nicht aufgestellt werden, da die Konstanten immer von der Paarung der Werkstoffe und Scheiben sowie den Betriebsbedingungen abhängig sind (Kraft, Geschwindigkeitsverhältnis, "H" Wärmeverteilung, Kühl-Schmierflüssigkeit usw.). Die Maßnahmen von "IN-FOSS", durch Versuche unterstützte Standzeitgleichungen aufzustellen (ohne Beachtung der Trendanalyse bis 1990) waren also richtig.
- In Anbetracht der erwähnten Tatsachen ist es wichtig, kostsparende und zeitsparende Methoden zur Standzeitbestimmung zu entwickeln. Bei Benützung der Kon-

stante nach LURJE wurde vom Verfasser eine solche Methode erarbeitet, durch die eine zufriedenstellende Genauigkeit und ein geringer Arbeitsaufwand ermöglicht wird (12). Der Einsatz dieser Methode wird zur Benützung im Rahmen einer nationalen technologischen Datenbank vorgeschlagen.

 Schlie
ßlich wird vom Verfasser darauf hingewiesen, daß die G
ültigkeit der durch Dimensionsanalyse aufgestellten Standzeitgleichungen nur bis zur Grenze Z_{krit} (3) besteht, von welcher ab der Kornverschlei
ß dem vom Verfasser als ,,volumetrischer Verschlei
β" bezeichneten physischen Prinzip nicht mehr entspricht.

Anhang

A) Lösung der Dimensionsanalyse

Die zwei angegebenen Gleichungen sind wie folgt:

- $1. \quad Q_1 = F_n^a Z^b v_s^c H^d T_s^1$
- 2. $Q_2 = F_n^e Z^f v_s^g H^i \cdot \tau^1.$

Aufgabe: beide Gleichungen sollen dimensionslos umgewandelt werden. Werden die physischen Größen mit den Dimensionen in Tab. 1 des Abschnittes 3 ersetzt, ergeben sich die folgenden Gleichungen:

und

$$Q_1 = (ML^{-1} T^{-2})^a \cdot (L^3 T^{-1})^b \cdot (LT^{-1})^c \cdot (M^2 T^{-5} \cdot \Theta^{-2})^d \cdot T^1$$
$$Q_2 = (ML^{-1} T^{-2})^e \cdot (L^3 T^{-1})^f \cdot TLT^{-1})^g \cdot (M^2 T^{-5} \cdot \Theta^{-2})^i \cdot \Theta^1.$$

Sowohl die Gleichung Q_1 als auch die Gleichung Q_2 sind dimensionslos, falls die Exponenten gleich 0 sind. So erhält man die nachstehenden Gleichungen mit mehreren Unbekannten:

bei
$$Q_1$$
:

für (L):
$$(-a+3b+c) = 0$$

für (T): $(-2a-b-c-5d+1) = 0$
für (M): $(a+d) = 0$
für (Θ): $(2d = 0)$.
Zur Lösung:
aus (Θ): $d = 0$
aus (M): $a = 0$
aus (M): $a = 0$
aus (T): $-b-c+1 = 0$; $b = 1-c$
aus (L): $3-3c+c = 0$; $2c = 3$ und $c = 3/2 = 1.5$; also $b = -0.5$.

Mit den unterstrichenen Ergebnissen schließlich:

Bei
$$Q_2$$
:
 $Q_1 = Z^{-0.5} \cdot v_s^{1.5} \cdot T_s.$
 $Q_2 = (ML^{-1}T^{-2})^e \cdot (L^3T^{-1})^f \cdot (LT^{-1})^g \cdot (M^2T^{-5}\Theta^{-2})^i \cdot \Theta^1.$

Auch Q_2 ist nur dann dimensionslos, falls die Exponenten der Dimensionen gleich 0 sind:

für (L): (-e+3f+g) = 0für (C): (-2e-f-g-5i) = 0für (M): (e+2i) = 0für (Θ): (1-2i) = 0. Nach Lösung der obigen Gleichungen: aus (Θ): i = 0,5aus (M): e = -1aus (T): (+2-f-g-5/2) = 0 und f = -1/2-gaus (L): (+1-3/2-3g+g = 0), daraus g = 1/4 und deshalb f = 1/2 - 1/4 = 1/4.

Mit den unterstrichenen Ergebnissen:

$$Q_2 = F_n^{-1} \cdot Z^{1/2} \cdot v_s^{-1/4} \cdot H^{0,5} \cdot \tau$$
 q.e.d.

B) Bestimmung des Wertes "H"

Der Wert "H" ist eigentlich der Wärmeverteilungs-Koeffizient. In der englischen Literatur wird dies als "Wärmeäquivalent" ("consolidated heat value") bezeichnet. Wird einer Einheit des Volumens eine Wärmemenge zugeführt, die einer Arbeit W entspricht, tritt eine Erwärmung von der spezifischen Wärmekapazität abhängig auf, während die Abkühlung der Wärmeleitungsfähigkeit des Metalls unterworfen ist. Die beiden Prozesse erreichen im Schleifverfahren einen Ausgleichzustand, folglich ist die englische Benennung "Konsolidation" ist bestätigt. Diese Fähigkeit des Werkstoffes wird vom Wert "H" ausdrückt, der auf die folgende Weise abgeleitet wird:

Wärme (Arbeit) wird dem Werkstoff zugeführt, d. h.

1.
$$W = FL = ML^2 T^{-2}$$

abgeführt gemäß der Wärmeleitungsfähigkeit

2. $\lambda = \text{Kcal/m}, h, \quad {}^{\circ}\text{C} = M \cdot L^2 \cdot T^{-2}/L, \quad T \cdot \Theta = MLT^{-3}\Theta^{-1}$

·96

und die Erwärmung des Volumens wird durch die spezifische Wärmekapazität beeinflußt:

3. $c = \text{kcal/m}^3$, $^{\circ}\text{C} = ML^2 T^{-2}/L^3$, $\Theta = ML^{-1} T^{-2} \Theta^{-1}$

vorausgesetzt, daß die Wärme des Volumens durch den Wärmeverteilungs-Koeffizienten λ . c geregelt wird, daher ergibt sich die Dimension

4.
$$\lambda \cdot c = (MLT^{-3}\Theta^{-1}) \cdot (ML^{-1}T^{-2}\Theta^{-1}) = M^2 T^{-5}\Theta^{-2}$$

die in die Dimensionsanalyse eingeführt wurde.

C) Wert "H" für normalisierten Stahl C 45

Bei niedriglegiertem Stahl und für den Wärmeleitungskoeffizienten λ interpoliert wird nach dem Handbuch (13) der Wert 36,5 (Kal/m, h, °C) aufgenommen, wobei c=0,127 (Kal/m³), d. h. $H^*=\lambda \cdot C=36,5 \cdot 0,112=4,46$.

Bei Beachtung der Berührungszone des Schleifens wird empfohlen, den Wert λ nach der Dimension (Kcal/mm, min, °C) anzugeben. Der Umrechnungsfaktor beträgt 1000/60=16,6, so: $H=H^* \cdot 16,6=4,46 \cdot 16,6=73,96$. Bei H=73,96 ist $H^{0,5}==8,6$, wie in Gleichung (10) geschrieben.

Zusammenfassung

Um die großen Streuungen auszuschließen, die bei der praktischen Anwendung der bisher empfohlenen T-Z Gleichungen auftreten, wurde vom Verfasser mit Hilfe eines neuen Modells eine Dimensionsanalyse mit gutem Erfolg entwickelt. Nach der Theorie sind die Abweichungen begründet. Daher wird vorgeschlagen, für jede Paarung von Werkstoffen und Schleifscheiben je eine T-Z Gleichung empirisch aufzustellen, wozu die vom Verfasser erarbeitete, neue, zeitsparende Methode dient.

Literatur

- 1. COLDING, B. et al.: Recent research and development in grinding. Annals of CIRP. vol. 21 No. 2 (1972).
- KÖNIG, W., BÖTTLER, E.: INFOSS Informationszentrum für Schnittwerte: Schleifen. Ind. Anz. 101 Jg. (1979) No. 910, pp. 30—32.
- KALÁSZI, I.: Schneidfähigkeit der konventionellen (Al₂O₃) Schleifscheiben. Dissertation, Ung. Wiss. Akademie, (1985) Budapest (Manuskript).
- 4. KOLOC, J.: On the wear of grinding wheels. Microtechnic, Vol. XIII. No. 1, 1962, pp. 12-16.
- KALÁSZI, I.: Some remarks on grinding wheel and wheel life. Periodica Polytechnica (Mech. Eng.), Vol. 16, No. 1, pp. 97–108, 1972.
- OPITZ, H., FRANK, J.: Richtwerte f
 ür das Aussenrundschleifen. Westdeutscher Verlag, K
 öln/Opladen, 1961.
- 7. KÖNIG, W., WERNER, G.: Adaptive control optimization of high efficiency external grinding

concept, technological basis and applications. Annals of CIRP, Vol. 23 (1974), No. 1, pp. 101-102.

- LINDSAY, R. P., HAHN, R. S.: The relationship between wheel characteristic and operating problems in high production precision grinding. Annals of the CIRP, Vol. 21/1, 1972, pp. 77-79.
- KALÁSZI, I. et al.: Entwicklung einer Laborversuchsmethode f
 ür Schleifk
 ühlmittel. Ind. Antrag von GTI, No. 20 — 1929, unveröffentlicher Forschungsbericht (Manuskript), Budapest, 1969.
- LURJE, G. B.: Nomogramma dlja opredelenie rezsima kruglogo vreznogo slifovanija bez prizsogov. Sztanki i instrument, 1975, No. 1, pp. 35–36.
- 11. MASSLOW, E. N.: Grundlagen der Theorie des Metallschleifens, Vlg. Technik, 1952, Berlin.
- KALÁSZI, I.: Erweiterung der Schneidfähigkeitsparameter nach Lurje auf die Planung der Schleiftechnologie, Periodica Polytechnica, Vol. 27, No. 1–2, pp. 23–26, 1983.
- 13. KRIST, T.: Werkstatt-Tabellen, Band I, p. 316, Leipzig, 1952.
- KÖNIG, W.: Fertigungsverfahren. Band 2. Schleifen, Honen, Läppen. VDI-Verlag, Düsseldorf, 1980.
- Dr. István KALÁSZI, H-1521. Budapest.