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Abstract 

The stability of asymmetrically built rectangular sandwich piate with constructionally 
orthotropic hard faces at Navier-type boundary conditions is studied. The governing equations 
derived in [5] from Trefftz-Bolotin variational principle are solved by Fourier method. The remarks 
are made on the consideration of the asymmetry of building and loading of the plate. 

1. Introduction 

According to the requirements of practical applications the hard layers (faces) 
of the sandwich plates are often "reinforced" by bending in one direction or other­
wise (Fig. 1). 

It was supposed that the layout of the hard layers permit to use the "effectiye" 
stiffnes theory and using the suppositions of the validity of the Kirchhoff-Love 
hypothesis the equivalent stiffness characteristics for these layers are determined by 
"smothing" of the stiffness characteristics of the reinforced layers. In the case of 
layers, stiffened by one direction bending the method and formulas for equivalent 

Fig. I. The construction of the sandwich plate 
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stiffness characteristics depending on the geometric and material paramenters of 
the layers are shown in the Part I of this paper [5]. 

It was supposed that the material of all the layers is elastic and the stress-strain 
relations could be described by Hooke's law. Corresponding to the common as­
sumptions of the theory of sandwich plates with transversally soft middle layer 
(core) it was supposed that the material of the hard layers is orthotropic, and the 
material of the core is transversally isotropic. 

In the Part I the governing equations and natural boundary conditions of the 
stability problem are given, too. 

So, using the common suppositions in the theory of sandwich plate [1-4] 
repeating the main statements - including the corrected governing equations -
of Part I in this Part II we will investigate the stability of asymmetrically built and 
loaded rectangular sandwich plate with constructionally Oithotropic hard and trans­
Yersally isotropic soft layers. According to loading we suppose that each hard layer 
is loaded with normal and constant in plane forces on the edges, but this forces 
could be different - in particular case zero - for different layers and directions 
(Fig. 2). The algorithm of the inyestigation will be as usual. 

Fig. 2. The loading of the sandwich plate 

20 Generalised constitutive equations 

Using the common definitions and symbols for the internal membrane forces and 
internal moments, after integration of the Hooke's law or from the equivalence of 
deformation energy of the stiffened (bent) and flat plates with uniform (the same) 
thickness, we find the equivalent stiffness characteristics and the generalised Hooke's 
law connecting the internal forces and strains in the middle plane of the hard layer 
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in form: 

(1) 

Here 

(2) 

are the vector of membrane forces and internal moments, the strain vector and the 
curvature vector, 

are the stiffness characteristics, and the stiffness matrices have form: 

o 1 K = [Kll 
0; K12 

C66 0 
o 1 o . 

Daa 

(3) 

The matrix K characterises the coupling effect between stretching and bending 
which is significant for the constructionally anisotropic plates. 

Corresponding to the assumptions for the stresses and deformations in the 
soft layer, which were assumed to be constant along the layer, for the generalised 
constitutive equation of the soft layer we have find: 

where the stiffness characteristics are: 

Here 

R= E= 
s 

(4) 

(5) 

where G and E= are the average of the shear moduli and the Young moduli in normal 
direction to the plate of the soft layer with thickness s. 
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3. Governing equations and natural boundary conditions 

Using the Trefftz-Bolotin variational principle [3] in the 1. Part of this 
paper the governing equations and corresponding natural boudary conditions 
were derived and we got: 

V~l u2 + V~3l'"- :1: Vkl H'2+ (-lY sByx= = 0, 

n~ , . ..L n~ If _ ~ n" '\' ..L (_ 1)" sE'" - ° V c2 v a: 1 Ye3:x ay Yk2. t a: 1 Iy= - , 

(0:=1,2) 

where the operators are as follows: 

and Yx=, Yy= have forms 

f)2 fY 
n" C" ..LC" Vel = 11 ~, '66~, 

U:C UY-

f)2 
\7" - (/"'~ 'C2) 'e3 - '-'10 , 66~, 

- uxuy 

f)2 f)2 
n" K'~ ..L (K" I 2KOO) 
y k1 = 11 ~." I 19 T 66 ~, . U.r " uy" 

f)2 &2 
000 - K'" I (K~ I 2K~) Yk'> - "?~T 1 0)7 66~' " -- uy- " (IX" 

Yx- = ~ [lll - ll., +~ (1', IVl + 1'.)11'9)] , 
. - S - (IX - --

(6) 

(7) 

(8) 



STABILITY OF RECTANGULAR SANDWICH PLATES 103 

where 

For the natural boundary conditions - after adequate transformations - on the 
boundary x=constant we have: 

(9) 

Here u,,(x, y), t'~(x, y), lV,,(X, y) (0:=1,2) are the displacements functions of the 
points belonging to the middle surfaces of the hard layers in the directions of the 
coordinates, "Ex: - are the shear stresses in the soft layer. 

The meaning of the first three conditions is obvious and well known: the value 
of membrane edge forces acting in the plane of hard layers as well as the bending 
edge moment on the free boundary must be zero. 

The fourth expression - analysed in Part I [5] - means, that the generalized 
transversal shear edge forces on the boundary must be zero. 

The actual solution of the governing equations (6) shall be obtained with the 
prevailing boundary conditions, can be described accordingly being taken into 
consideration. As is well-known from the stability theory of plates, Fourier's method 
shall reasonably be applied to solve the problem of eigenvalue so arisen, provided 
at least two opposite boundaries are "simply supported" and the plates are only 
in compression i.e. N:y=O, (0:= 1,2). In cases other than this, whether in case 
of more sophisticated boundary conditions or in case N;y¥-O (that means if the 
plate is subjected also to shear), other approximations shall be applied. In such 
cases to the solution of equations it is reasonable to prefer some direct method 
of variation calculation, based on expressions of the functional of the stability 
problem. 

4. Solution of the stability problem of rectangular plate 
with Navier-type boundary conditions 

Let us investigate the stability of rectangular sandwich plate with side lengths 
lx=A, ly=B, compressed by resultant edge forces N x, Ny only (N."y=O), not de­
pending on the coordinates. Let us suppose that the hard layers are "simply sup­
ported" on the edges and compressed by constant edge forces N:, N; for which 
we have (Fig. 2) : 
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According to the basic theory we also suppose that the variation of the tangential 
displacements normal to the edges and the rotation of the normal to the plate on 
the edges not equal to zero and - as well-known from the thin plates theory - the 
vanishing condition for the shear membrane forces on the edges can be satisfied in 
integral sense only. 

In this case for the hard layers edges at x=const: 

Iy 

Nxy = J [C66y+K662Z]~dx = ° 
o 

Jnd the boundary conditions are: 

v~ = 0, W~ = ° 
lvf~ = [Kn8x+KIZ8y+Dll%x+D12%yL = 0, 

N~+[Cn8x+C128y+Kn%x+K12%J~ = 0, 

(10) 

Dr because of constant external edge forces Nx the last condition is valid in inte­
gral sense: 

1 Iy 

N~ = -T J [Cn8x+C128y+Kll%x+K12%y]~dy. 
y 0 

(11) 

These boundary conditions correspond to the Navier type boundary conditions 
for the simply supported plate but here we have conditions for the tangential dis­
placements, too and the condition (5ux =FO means that the edge of the hard layers 
can move in the plane of the layer so we have boundary conditions with moving 
edges. 

These boundary conditions will be satisfied if - using the Fourier method -
we take the solution in form: 

Here 

Ux = Z Z U<zcos(k1x) sin (kzy), 
i j 

VeL = Z Z v" sin (klX) cos (kzY), 
i j 

WeL = Z Z ~ sin (klX) sin (k2Y)· 
i j 

jn n 
k 2 =-=-,-

D j.y 

(12) 

are the wave numbers I.x , }'y - the half wave length in the x, y directions and i, j­
natural whole numbers which run from 1 to 00. Before the solution of the differential 
equation we should make some remarks to the asymmetry and loading of the plate. 
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4.1. Choosing of the "basic surface" of the layers 

At optional chosen basic (middle) surface from the generalised constitutive 
equation (1) for the strain and curvature vector we obtain: 

(13) 

where 13 and 12 are the 3 X3 and 2X2 idem-matrices and @ the sign of direct multi­
plication. At the stability problem before the buckling the plate should be in moment­
less (in plane) deformation state and so for the hard layers we should have %=0. 
With this conditions from the Eq. (13) we have 

x = D-l[M-KC-lN] = 0, 

which means that for x=O we should choose a new "basic surface" on the "dis­
tance" 

Zo = KC-l 

from the previous. For this new "basic surface" M*=O (Fig. 3) and from the expres­
sion (13) we can see, that K*=O, too. For the stiffness characteristic by bending in 
this case with the previous values we have: 

D* = D-KKC-l. 

Fig. 3. Choosing of the "basic surface" 

4.2. Remarks to the loading of the plate 

Depending on the loading of the plate and on passing this loading to the hard 
layers we can distinguish some characteristic case of loading of the hard layers: 
a) both hard layers are loaded 

x) in both directions 
[3) in one and the same direction 
/) in different directions 

b) one of the hard layers is loaded only 
a) in both directions 
[3) in one and the same direction. 
In these cases the in-plane deformation of the layers will be different in the post­

buckling state but we can suppose - as usual in the thin plate theory - that before 
the buckling the hard layers have negligibly small in-plane deformation, and for 
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the disturbation-Iess state of the plate the pressed curvature-less state is taken. 
In this bending-less state of the plate the strain vector EX is: 

EX = AX.Nx, (A = C-l) 

.and for the in-plane deformation and membrane forces we have (Fig. 4): 

(14) 

Fig. 4. Deformation in bending-less state 

This is a set of four equations to determine the ratio of the loading membrane 
forces on the edges of the hard layers. Depending on the characteristic cases of 
loading we get different values for these ratios. 

For example in the case a), ('I.) we have: 

. N~ n[3; + [3; , NJ ('I.~ - net~ 
)'1 = Nx2 = 11[3.~ _[3y1' )'2 = Ny2. = 2 9 ., - et~ + net?,; 

where 

and 

ly'" . ° n=NT , 
y 

('I.~ = AilA§l-A~lAil' 

('I.~ = AilA~2-Ai2A~l+AilA~2-AhAi2' 
et; = AilAh-Ai2A~l+AilA~2-Ai2A§l' 
[3; = Ail A~2 - Ai2 A~l + Ail A~2 - Ail! A~l' 

[3;' = AilA~2-Ai2A~l+AilA~2-Ai2A~l' 

[3~ = Ail A~2 - Ai2 A~2 

.are paramenters of stiffness (rigidity) characteristics of the layers. 
In the case a), [3), Nx=O, which can be in two different ways: 

1) N; = -N~ 
2) N~ = N; = 0. 

(15) 
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In the first case we can use Eq. (14) from which with 11=0 we get: 

but in the second case Eq. (14) leads to contradictions because the number of equa­
tions more than the number of unknown. In this case B~=B;' and B~=B~ cannot 
exist simultaneously except when 

and so practical to prescribe the realisation one of these equality of the deforma­
tions, e.g.: B~=B~ corresponding to Ny~O, in this case we have not value for 
).1' but 

In the case b), Cf.) all the external forces are acting on one of the layers and so 
-,ve do not need (and they do not exist) the ratios i' l and ;'2' This is the situation in 
the case b), [3), too. 

Using these expressions we can determine the loading parameters as functions 
of the chosen unknown membrane edge forces, e.g. as functions N y • 

4.3. Critical mllies of external loads 

Substituting the solution (12) into the differential equations (6) we obtain a 
second order algebraic equation for the loading parameters 

jn form: 

NI = ki Ni + k~ Ni = ;'3 Ni, 

N2 = ki N~+k~ Ni = ;'4 Ni 

(16) 

(17) 

where b, c, d, are the parameters of the system and parameters )'3' )'4 depend/cor­
respond to the characteristic cases of loading. 

In the case a), 0:): 

. 1 [k' /., 1 + ).0] 
1 . ..1 ='2+ (i 11 1..L/:· - . 

, '1 

In the case a), /3) 1): 

. _ 1 k2 k~ [31 (1 ' . ) 
1 . ..1 - -.- 2--A y. '/2 , 

/_"2, LJ 



108 L. POMAZI 

where: 

Lt == f3~ + fJ~ , 
In the case a), [3) 2): 

where 

In the case b), a): 
When the a=1 layer is loaded (Q=l): )'3=k:+lIki, 1.4 =0. 
When the a=2 layer is loaded (Q=2): )'3=0, 1.4=k~+nki. 
In the case b) [3): 

At Q=2: 1.3 =0, )'4=k~. 

Using these parameters and Eq. (16) for different cases of loading from Eq. (17) 
we can determine the critical value of external forces (N;\rit and finally - with 
parameters 11, )'1' )'2 - we find: 

Equation (17) gives two values for N; which are connected with the asymmetrical 
and symmetrical forms of instability. These forms can be separated analytically 
for the symmetrically built and loaded sandwich plate, only. In given case they can 
be determined by the calculation of the ratio of normal displacement amplitudes 
Wrj~ and when Sign (H{jWJ = 1 or Sign (H{/H~) = -1 the form of instability 
asymmetric or symmetric, respectively. 

The solution can slightly or hardly depend on the boundary conditions which 
determine the local or global character of instability, respectively. These characters 
can be determined by the ratio of half 'Nave length to the side-length of the plate 
in given direction. For example if in the moment of instability (J)cri,=).*<B, 
then the character of instability is local, if 1.* ?=B, then it is global. 

The elaborated computer program gives possibility to analyse the stability of 
asymmetrically built and loaded sandwich plate. 



STABILITY OF RECTANGULAR SANDWICH PLATES 109 

5. Stability analysis of some constructions 

Two types of hard layer were chosen for building the asymmetric sandwich plate. 
The first one was a standard trapezoid plate (TR 13/63) with material and measure­
ment characteristics: 

E = 6,8· 106 kN/cm2
, V = 0,3, hI = 112 = 1 mm, 

and the second one was a flat plate for which E, v was the same as for trapezoid 
plate but the thickness was 11,,,=1 mm or h,,=2 mm. 

The soft layer was supposed to be made from polyurethane foam with material 
and measurement characteristics: 

E= = 180 kN/cm2, G = SO kN/cm2, s = 80 mm. 

With these layers three types of sandwich plate were built, so that the upper 
layer was stiffer than the lower one: 
a) both of layers are trapezoid plate, 
b) the Cf.=1 layer is trapezoid, but the :;(=2 layer is flat plate (h2=1 mm), 
c) both of layers are flat plates, but their thickness is different: hI =2 m111, 

h2 =lm111. 
The Fig. 5 shows the values of critical loads N}~ versus side length B in y direction 
for different case of construction (a, b, c), loading (Q=O, 1,2) and side length 
A in x direction of the sandwich plate at n=Nx/Ny=O. 

It can be seen that the plate is not very sensitive to the character of loading. 
The curves for different Q are quite close to each other - as in the case of short 
plate there is a sensitive difference between the cases Q=O and Q=1,2 only. 

The smaller critical value of external load N; corresponds to the asymmetrical 
form of instability and in the Fig. 5 the \va\'e lengths ;.~, are shown which in the given 
case divide the local and global forms of instability. 

The Fig. 5 shows that the stability of the plate is sensitive to the construction 
and side-lengths. At A=250 cm it is found that if B<;.o then the construction 
c), but at B>!.o construction a) and b) have the lowest critical value of external 
forces at the same side-length B. 

The plan of external loads could be different in different directions and the 
plan of loading must not coincide \vitl the basic surface (plan) of the plate. On the 
Fig. 6 it is shown the effect of the variation of the loading planes in different direc­
tions for the COl!struction c) of the plate. The ratios 1;.!T in x direction, the ratio 
T;/T in y direction shmv the place of the planes of loading, measured from the basic 
surface of c:= 1 layer. The curves are close enough which means that the plate is 
not very sensitive to the different plane ofloading in different directions. For example 
if the Cf.=1 layer is loaded in x direction, but Cf.=2 layer in y direetiol1 (see in 
the Fig. 5 case Li: 1;./T=O, T;/T=l) the Li-cun'e of critical loads is quite close 
to the others, getting at different plane of loading. 

----_ •...... - ...•.. - .. - .. --.-. - .. -... -.-.... -... -.-~--.-. - ..• _ ..... _ ... -_ ..•... 
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Fig. 5. Critical loads \'5. side length B for different case of construction (a, b, c) loading (Q = O. 1, 2) 
and side length A 

We should remark that in our investigations for the disturbation-Iess state 
of the plate the in-plane strain-stress state of plate was taken. If we want to take 
into consideration the in-plane deformation of the plate we shouid drawing up the 
nonlinear (postbuckling) problem of the sandwich plate [6, 7J. 
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Fig. 6. Effect of the ':ariation of the planes of external forces for the critical loads 
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