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Abstract 

In hydraulic positional servomechanism the hydraulic fluid compressibility variation due 
to air bubbles, namely the increase of air volume ratio in oil gives rise to a negative fact in the 
behavior of the system. The presence of hysteresis backlash brings about the limit cycle in the 
second-order system, but for a third-order system the backlash ameliorates the condition of 
system stability, in spite of controlling accuracy. Besides, in this case limit cycle does not occur. 

The present paper deals with the above problems and gives some interesting conclusions 
which can be used in engineering practice. 

Introduction 

Until now the investigation of hydraulic positional mechanism has 
usually been based upon the linear model. These systems are strongly nonlinear 
because, on the one hand the hydrodynamic processes are very complicated, on 
the other hand Coulomb's friction and backlash in addition, commonly make 
for a new multy-valued nonlinearity. By means of the usual method the investi
gation of such systems is very tiring and long. But nowadays, modern calcu
lation technique as an effectual means gives a lot of aid to engineers in their 
activity. 

The present paper endeavours to investigate theoretically a copying 
shaper having two-control edge valve as regards hysteresis backlash and 
hydraulic fluid compressibility, in a manner by extending the usual linear 
model [3J by the mentioned nonlinearity. The obtained result coincides with 
the one in [1]. But it is sure that this simulation gives a more exact result than 
the isocline method for the second-order system, and it is the only way which 
may give a result for the third-order system when the compressibility of 
hydraulic fluid is not negligible. The computer program may be used for an 
investigation of a similar system having discretional parameters. 
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The modelling of the system 

In the following control system often the hysteresis backlash is due to the 
gear-drive and linkage in the mechanical part of the system if we consider these 
to be totally stiff and Coulomb's friction to be present. They make a 
nonlinearity as a feedback element of the controlled system depending on what 
we consider the system controlled variable. In the present case, for the 
mentioned system, this nonlinearity is the feedback element (see Fig. 1). It is 

Xa + Xr I K I Xs 

- I s [T2s2+2~Ts+1l1 

Xk ~ Xb 

Fig. r Block diagram of the system 

interesting to remember that the transfer function of the linear element may be 
written in an other form [2J, however in such a case its constants have a 
different physical sense. But in point of view of the solution the results are the 
same. In Fig. 1 the senses of the designation are 

Xa command signal or system input signal 
Xr = system error signal or actuating signal 
Xb ' X k = input and output signal of the nonlinearity, respectively 
Xs = controlled signal or system output signal 
s = Laplace transform variable 
T and (= time constant and damping ratio of the linear element, 

respectively 
K = the open loop gain. 

Fig. 2. Characteristics of the hysteresis blacklash 
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Let us consider in detail the non linear element. Basically this element is a 
typical nonlinearity which is linear zone by zone, i.e., it is the piecewise linear 
element due to the effect of Coulomb's friction and backlash (or the dead zone). 
With the designation of Fig. 2 between the input Xb and the output X k of the 
nonIinearity we find the following relations: 
for piece 1 

Xk =A -h=const. (la) 
for piece 2 

Xk=xb+h (lb) 
for piece 3 

Xk = -A+h=const. (1 c) 
and for piece 4 

Xk=xb-h (Id) 
where 

A = time amplitude of input signal of the nonlinearity. 
For the sake of the system consideration let the system input signal (i.e., 

xa) be Dirac's impulse, i.e., xa(t) = 6(t). In accordance with Fig. 1 and Eqs (l a)
(Id) one may obtain the following differential equations 

respectively. 

T2Xs + 2(Txs + Xs + K (A - h) = 0 

T2xs+ 2(Txs+xs+ K(xs+ h)=O 

T2xs+2(Txs+xs+K( -A +h)=O 

T2.xs+ 2(Txs+ xs+ K (xs-h)=O 

(2) 

If the system input signal is the step function xa(t) = X a 1 (t) then by 
variable transformation x:(t) = x.(t) - KX a the form of the corresponding 
equations is similar to the one of (2). Therefore in this case the solution 
procedure is also similar. By an inverse transformation the time dependent 
response may be received. For the solution procedure it is sufficient to deal 
with case (2). 

It is well known that in case of a hydraulic servomechanism, if the 
hydraulic fluid compressibility is negligible, the transfer function of the linear 
element may be written in the following form [3] 

3 Periodica Polytechnica M. 31/1. 

K 
Y(s) = seTs + 1) (3) 
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In this case the corresponding describing differential equations are 

Txx+·xs+K(A-h)=O 

Txs+xs+ K(xs+ h)=O 

T.xs +.xs+ K( -A +h)=O 

T.xs+xs+ K (xs- h) =0 

also for the system input signal xa(t) = b(t) (i.e., Dirac's impulse). 

(4) 

In principle Eqs. (3) or (4) may be solved by the customary method well 
known in the domain of ordinary differential equations considering the 
property of the piecewise linear. Thus the initial condition of integration curve 
in the next zone is the value of the final point of the integration curve in the 
preceding one. So, step by step we may determine a total integration curve for a 
given initial codition. It is easily seen this method is time consuming and 
complicated. With a more comfortable procedure, the isocline method can be 
used to solve the problem, but the necessary accuracy is not assured. 

F or the purpose of a more exact and clear solution we shall use the phase
space method for both (2) and (4), with the trajectories drawn in the isometrical 
axonometric coordinate system. The dashed curves indicate phase points 
where the acceleration xs(t) is negative. 

In the following we shall use a numerical method, the fourth-order 
Runge-Kutta algorithm. This is one of the most accurate methods of numerical 
analysis. 

Illustrative example 

Here we used the data of the example in [4J, for a copying shaper, namely: 
system operation pressure Po=20 bar ~2 '106 N/m2 
the larger and the smaller surface of the actuator piston 

the flow factor of the controlling valve /1=0.75 
specific weight of pure oil ro = 8000 N/m 3 

reduced mass of moving elements m = 2 kg 
the largest volume capacity of the actuator cylinder 

v= 2.4· 10- 4 m 3 

the compressibility modulus of pure oil f3o=5 .10- 8 m 2jN 
fluid friction factor B= 1000 Ns/m 
nominal diameter of the controlling valve d = 1.8 . 10- 2 m 
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Input data 

yes 

Use the relation 
Corresponding 
to piece CD ! 

yes 

Use the relation 
Corresponding 
to piece @! 

yes 

Use the relation 
Corresponding 
to piece @ ! 

Fig. 3. The program flowchart 

yes 

Use the relation 
Corresponding 
to piece @! 
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the negative overlap of the controlling valve 

Go=10- 4 m (=l00llm) 

the force amplification factor Bo = 8 . 103 N/m 
the speed amplification factor Do=1031/s 
After these we may receive the following tabulated result (see Tab. 1), 

where 

v = volume ratio of air-oil mixture 
T2 = system time constant , = system damping ratio 
K = open loop gain. 

Table I 

(l (1/ n, T2 ' 104 
S 2~ K 

0.00 3.850 0.660744 987.65 
0.20 4.037 0.632414 988.63 
0.40 4.217 0.607724 989.61 
0.60 4.391 0.585964 990.59 
0.80 4.558 0.566610 991.57 
1.00 4.720 0.549256 992.56 
1.20 4.878 0.533588 993.35 
1.40 5.031 0.519356 994.55 

1.48 5.091 0.514042 994.95 

1.60 5.180 0.506358 995.55 
1.80 5.325 0.494430 996.55 
2.00 5.467 0.485438 997.55 

It is also to be noticed, that to receive the results in Tab. 1 we used the following 
expressions [4]: 

where 

T2={ 1+(Eo/P5)V/(l-v)fJo ]1/2 
(

BKQO 2) ( v) 
I-v + 4AoKp 1+ Po(l-v) 

K p = the pressure difference amplification factor 
KQo = the volume flow amplification factor (for pure oil) 
Eo = l/fJo 

c= _1_. mKQj~+ VKpBfJ 

2T2 BKQo/~+4A5Kp 
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Fig. 4. Diagram of function 1(v) 
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When the compressibility of the hydraulic fluid is negligible the value of 
the system parameters (i.e., the open loop gain K and the time constant T2 ) are: 

K=957 
and 

T2 =2.39.10- 4 S. 
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v% 

Fig. 6. Diagram of function K(v) 

Using these values it may be stated what the system behavior is like at different 
magnitudes of backlash. Especially the question has to be answered if there is a 
limit cycle or the limit cycle in system operation may be proven. In addition we 
may determine the relation between the backlash magnitude and the limit cycle 
amplitude. 

When the hydraulic fluid compressibility is not negligible we also have 
answer to questions similar to the ones mentioned above and as we shall see 
later, for the system behaviour we discovered a lot of interesting properties. 

In the following we first deal with the case of incompressibility, and then 
that of compressibility. All results are summarized in tables and diagrams. 

If the fluid compressibility is negligible, it follows that the system 
characteristic polynomial (i.e., the denominator of the transfer function) is 
second-order. In this case the open loop gain and the time constant are 
invariable. The model has only one variable parameter, the backlash 
magnitude. Nevertheless when the fluid compressibility changes due to the 
presence of air bubbles, besides the backlash parameter there is also an other 
parameter, the air-oil volume ratio v, which changes the open loop gain, the 
time constant and the damping ratio. Since the variation speed of the latter are 
very much smaller (by several orders) than the frequency of the system, we 
consider these not to be system variables, they are system parameters (see Figs 
4, 5 and 6 and Tab. 1). 

a) Case of incompressibility (the second-order· system). The results of this 
case are summarized in Tables 2 and 3, and Figs 7, 8,9 and 10. 

We see that in this case a limit cycle exists. 
b) Case of compressibility (the third-order system). It must be kept in mind 

--_ .... ,._-_.- -_._---------------------
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Table 2 

Values of function x(t), y(t) and z(t) 

Time Displacement Speed Acceleration 
W·t[s] x [!-Im] y [m/s] 10- 7 • z [m/s2] 

0.0 4818.0 0.0 0.00 
10.0 1316.5 -600.4 -2.2234257 
20.0 -409\.4 -327.3 6.7715374 
34.4 -1276.8 60 \.9 2.1564891 
44.4 4112.9 322.8 -6.8055412 
58.7 1297.2 -60\.1 -2.1908126 
68.7 -4102.0 -325.1 6.7888670 
83.1 - 1257.5 602.5 2.1239103 
93.1 4123.4 320.6 -6.8235381 

107.4 1277.9 -60\.8 -2.1583076 
117.4 -4112.5 - 322.9 6.8059564 
131.7 -1298.3 60\.1 2.1926224 
141.7 410\.6 325.2 -.67882650 
156.1 1258.5 -602.5 -2.1257074 
166.1 -4123.0 -320.7 6.8229453 
180.4 -1279.0 60\.8 2.1600913 
190.4 4112.2 323.0 -6.8053514 
204.7 1299.3 -60\.1 -2.1943982 
214.7 -4101.3 325.3 6.7876440 
229.1 - 1259.6 602.5 2.1274716 
239.1 4122.6 320.8 -6.8223340 
253.4 1280.0 -601.8 -2.1618427 
263.4 -4411.8 -323.1 6.8047290 
277.7 -1300.4 60\.1 2.1961424 
287.7 4100.9 325.5 -6.7870068 
302.1 1260.6 -602.5 -2.1292053 
312.1 -4122.2 -32\.0 6.8217070 
326.4 -128\.0 60\.8 2.1635644 
336.4 411\'4 323.3 -6.8040919 
350.7 130\.4 -60\.1 -2.1978573 

Table 3 

Relation between backlash and limit cycle amplitude 

The backlash magnitude 
h [!-Im] 

10 
20 
40 
60 
80 

100 
120 
140 
160 

The limit cycle amplitude 
Ah,=Xsh [!-Im] 

48.19 
96.39 

192.79 
289.23 
386.15 
481.39 
579.02 
675.24 
771.71 

39 
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X (t) 

change of 
amplitude 
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A= 0.2633 

A= 0.2909 

A .. 0.2963 

A =.0.3053 

A=0.3121 

A= O. 3167 

Fig. 7a. Diagram of functions x(t), y(t), z(t) (tending from inside to the limit cycle) 
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A= 0.4616 

A= 0.4616 

Fig. 7b. Diagram of functions x(t), y(t), z(t) (for the limit cycle case) 
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Fig. 7e. Diagram of functions x(t), y(t), z(t) (tending from outside to the limit cycle) 
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Fig. 8. Projection of the spatial trajectories (i.e., diagram of function y(x), z(y)) 
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Fig. 9. Spatial trajectories a, a': trajectory and its projection in (x, y) plain, which tends from 
inside to the limit cycle; b, b': trajectory and its projection in (x, y) plain for the limit cycle; c, c': 

trajectory and its projection in (x, y) plain which tends from outside to the limit cycle 

AhC = Xsh ['pm 1 

500 

o 100 h ['pml 

Fig. la. Relation between backlash and limit cycle amplitude 

that at every v value greater than 1.48% (i.e., v = 0.0148) the system in question is 
instable, if it is backlash free, [3] as seen in Fig. 11. The results of this case are 
also summarized in Tabs. 4, 5, 6 and Figs 11, 12, 13, 14 and 15. 
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Table 4 

Values of function x(t), y(t) and z(t) 

Time Displacement 
103 • C Cs] x [llm] 

0.00 110.11 
0.50 104.68 
1.00 75.13 
1.50 20.81 
2.00 - 35.24 
2.50 - 60.47 
3.00 - 38.38 
3.50 11.13 
4.00 55.13 
4.50 59.67 
5.12 - 20.63 
5.62 - 31.81 
6.12 - 63.40 
6.50 - 59.07 
7.00 20.05 
7.50 32.26 
8.00 63.56 
8.63 43.37 
9.13 - 6.32 
9.88 - 63.51 

10.50 43.52 
11.00 6.12 
11.50 52.23 
12.13 59.16 
12.63 20.16 
13.13 3.21 
13.63 63.54 
14.51 - 20.36 
15.01 31.99 
15.51 63.50 
16.14 43.19 
16.64 - 6.57 
17.14 52.51 
17.76 59.21 

Table 5 

Relation between backlash and 
initial controlled signal (at t' = 2%) 

h [llm] .\:0 [llm] 

0 0.0 
5 27.5 

10 55.0 
15 82.6 
20 110.1 

Speed 
10- 2 • y [m/s] 

0.0000 
- 3.0546 
- 8.7711 
-12.1479 

9.0803 
- 0.4894 

8.1149 
10.5661 
5.9211 

- 4.4960 
-10.2290 

9.5196 
- 2.3246 

4.4876 
10.2191 
9.4746 
2.2583 
8.0148 

-10.7810 
- 2.2951 

7.9917 
10.7837 
6.5186 

- 4.4802 
-10.2184 
- 9.4850 

2.2747 
10.2078 
9.5025 
2.3098 

- 8.0421 
-10.7795 

6.4569 
4.4682 

Acceleration 
z [m/s2] 

0.00 
-105.60 
-106.81 
- 10.94 

130.30 
191.60 
113.55 
21.92 

153.39 
-163.33 
- 57.60 

87.96 
181.45 
163.71 
57.04 

- 88.66 
-181.52 
-117.05 

13.85 
181.42 
117.49 

- 13.26 
-148.26 
-163.76 
- 57.24 

88.45 
181.50 
57.74 

- 87.92 
-181.39 
-116.58 

14.54 
149.10 
163.89 

Table 6 

Reiation between backlash and 
critical oscillation amplitude (at l' 

=2?/~) 

h [llm] Ah[llm] 

0 0.00 
5 16.30 

10 32.58 
15 48.85 
20 65.15 



44 TRAN VAN DAC 

150 

:t [}Jm] 

Fig. J J. Phase trajectories 

/- Stability region 

_ /- Instability region 

100 

o 5 10 15 

Fig. J 2a. Relation between backlash and critical magnitude of the initial con. sig. xo(h) 
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Fig, 12h, Relation between backlash and critical oscillation amplitude 
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Fig. 13a. Case of stability (corresponding to Fig. 11) 
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Fig. 13h. Case of stability limit (corresponding to Fig. 11) 
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Fig. 13c. Case of instability (corresponding to Fig. 11) 
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Conclusions and discussion 

On basis of the results obtained above we may state the following: 
1. If the hydraulic fluid compressibility is negligible (i.e., the incompres

sible case) and there is a hysteresis backlash in the system, the limit cycle occurs. 
This result corresponds completely to the one received by the other method 
[1]. An interesting fact is that between backlash magnitude and limit cycle 
amplitude a linear relation exists. It suggests that in the presence of this type of 
nonlinearity, the original linear system still retains some of its linear property 
(see Fig. 11). 

2. On the other hand, if the hydraulic fluid compressibility is not 
negligible, and its variation is also considered, the linear element of this system 
is a third-order one (its characteristic polynomial is third-order) and in the 
presence of hysteresis nonlinearity the system behavior totally differs from that 
of the second-order system. Namely: 

a) In the system-using the terminology of the stability investigation of 
the nonlinear system-the limit cycle does not occur! It behaves as a 
conditional stable linear system considering the compressibility magnitude. In 
other words, at every magnitude of compressibility there is one and only one 
critical input signal. At every input of an amplitude smaller than the critical 
one, the system stays stable. 

b) The hysteresis backlash ameliorates the stability property of the system 
in question, although it does so to the detriment of controlling accuracy. But in 
practice this situation is not always disavantageous because, for example, with 
a copying shaper when a roughing operation is made no one has to keep the 
magnitude smaller than a few micrometers. In the concrete example as the one 
above, when the mentioned volume ratio v of magnitude is 2~{" the system is 
unstable. But if there is a backlash h of magnitude 20 Ilm the system steady-state 
is the vibration which has an amplitude of 65 Ilm (we are of course not 
considering how such a vibration damages the system, from the point of its life). 
Every initial controlled signal amplitude, with a magnitude smaller than 
110 Ilm, there is no vibration in the system, and the controlled error in a steady
state takes a certain magnitude within the dead zone magnitude of 2h which is 
symmetrical to zero. 

c) If the system is stable then the backlash cannot make it instable. This 
fact confirms once more the statement in point b). Consequently its situation 
differs from the one of the second-order system where the presence of the 
hysteresis backlash puts a stop to the nature of structural stability. In the 
second-order system the limit cycle is disadvantageous from the point of both 
the controlling accuracy and the mechanical stress due to vibration. In practice 
it may be unusable because of its dynamical quality. 
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The statements discussed above are supported by a physical fact, namely 
that in the third-order system the backlash, within certain limits, brakes the 
feedback effect, moreover it may put a stop to the feedback if the amplitude of 
the initial controlled signal is not greater than backlash h. 

3. In the third-order system model if we consider the volume ratio of air
oil mixture as a system operation parameter, then between the initial 
magnitude of the controlled signal X o and backlash h, there exists a linear 
relation which divides the first quarter of plane (xo, h) into two regions, one 
characterized by stability and the other by instability as shown in Fig. 13. 
Besides, an increase of the volume ratio v diminishes the stability region. The 
situation of the critical oscillation amplitude is similar (see Fig. 14). 

Despite the preceding linear property, the system still retains an essential 
feature of nonlinearity, thus the system is stable for only the signals of small 
magnitudes. It is well known that from the viewpoint of stability the general 
property of all linear systems, their stability depends only upon the nature of 
the system, but does not depend upon the initial magnitude of the signal. 

4. The common application of the phase-space and the numerical 
analysis method-especially when a convenient graphical computer program 
is used-makes an investigation of the problem evident and simple. Besides we 
can more easily and rapidly determine the occurrence of the limit cycle (in the 
second-order system) or the stability limit (in the third-order system). Because 
in phase-space both the limit cycle and the stability limit make a trajectory 
which tends towards a certain closed curve (a closed trajectory), all projections 
of this trajectory are also closed curves if we consider the simple curve piece as 
the degenerated case of the trajectory projections. 

The phase-space method is not a new idea. But in the past its application 
was very rare due to the complications of computation and graphical technics. 
Modern computers put an end to these problems and so the phase-space 
method may become a good method for investigating engineering system 
dynamics. 
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