INTEGRAL MANIFOLDS AND SOME OPTIMAL CONTROL PROBLEMS

V. A. Sobolev
Department of Differential Equations, Kuibyshev State University, USSR*
Received November 29, 1984
Presented by Prof. Dr. M. Farkas

Abstract

A method of integral manifolds is applied to study singularly perturbed differential systems. The use of this method permits us to solve a problem of decomposition of singularly perturbed systems. The applications of the method are illustrated on examples.

Introduction

The purpose of this paper is to study the problem of singularly perturbed systems decomposition by the method of integral manifolds $[1,2]$.

Throughout this paper E^{n} denotes the real n-dimensional Euclidean space and $|\cdot|$ the Euclidean norm on this space.

The following system of differential equations is analyzed:

$$
\begin{equation*}
\dot{\chi}=f(t, \chi, y, \varepsilon), \quad \varepsilon \dot{y}=g(t, \chi, y, \varepsilon) \tag{1}
\end{equation*}
$$

where χ and f vary in E^{m}, y and g vary in $E^{n}, t \in R, \varepsilon$ is the small positive parameter. Such systems appear in some problems of mechanics [3,4] and control [5-8].

The object of our investigation is to obtain a transformation allowing to reduce (1) to system of form

$$
\begin{align*}
\dot{u} & =F(t, u, \varepsilon) \tag{2}\\
\varepsilon \dot{v} & =G(t, u, v, \varepsilon) \tag{3}
\end{align*}
$$

and to discuss some applications in stability, boundary value and control problems.

[^0]
Integral manifolds

First we recall the definition of an integral manifold for the equation $\dot{\chi}$ $=X(t, \chi)$, where $\chi \in E^{n}$. A set $S \subset R \times E^{n}$ is said to be an integral manifold if for $\left(t_{0}, \chi_{0}\right) \in S$, the solution $(t, \chi(t)), \chi\left(t_{0}\right)=\chi_{0}$ is in S for $t \in R$. If $(t, \chi(t)) \in S$ only at a finite interval, then we say that S is a local integral manifold.

Let us suppose that (1) satisfies the following hypotheses.
(i) Equation $g(t, \chi, y, 0)=0$ has the isolated solution $y=h_{0}(t, \chi)$ for $t \in R$, $\chi \in E^{m}$. The function h_{0} and its first and second partial derivatives with respect to all variables are uniformly continuous and bounded for $t \in R, \chi \in E^{m}$.
(ii) Functions f, g and their first and second partial derivatives with respect to all variables are uniformly continuous and bounded for $t \in R, \chi \in E^{m}$, $\left|y-h_{0}(t, \chi)\right| \leq \rho, 0 \leq \varepsilon \leq \varepsilon_{0}$.
(iii) The eigenvalues $\lambda_{i}=\lambda_{i}(t, \chi), i=1, \ldots, n$ of the matrix $\frac{\partial g}{\partial y}\left(t, \chi, h_{0}, 0\right)$ satisfy the inequality $\operatorname{Re} \lambda_{i} \leq-2 \beta<0, t \in R, \chi \in E^{n}$.

Under such assumptions the system (1) has the integral manifold y $=h(t, \chi, \varepsilon)$. The flow on this manifold is governed by the m-dimensional system

$$
\begin{equation*}
\dot{\chi}=f(t, \chi, h(t, \chi, \varepsilon), \varepsilon) . \tag{1.1}
\end{equation*}
$$

Function h is continuously differentiable and $h(t, \chi, 0)=h_{0}[1,2]$.
If f and g are sufficiently smooth with respect to all variables, then h may be represented as asymptotic expansion $h=h_{0}(t, \chi)+\varepsilon h_{1}(t, \chi)+\varepsilon^{2} \ldots$. The coefficients of this expansion can be found from the equation

$$
\begin{equation*}
\varepsilon \frac{\partial h}{\partial t}+\varepsilon \frac{\partial h}{\partial \chi} f(t, \chi, h, \varepsilon)=g(t, \chi, h, \varepsilon) \tag{1.2}
\end{equation*}
$$

by algebraic operations [3, 4].
Let us introduce new variables u, z, w, where u satisfies (1.1), $z=y$ $-h(t, \chi, \varepsilon), w=\chi-u$ and consider the auxiliary differential system

$$
\begin{align*}
\dot{u} & =f(t, u, h(t, u, \varepsilon), \varepsilon) \\
\dot{w} & =f_{1}(t, u, w, z, \varepsilon) \tag{1.3}\\
\varepsilon \dot{z} & =Z(t, u, w, z, \varepsilon)
\end{align*}
$$

where

$$
\begin{gathered}
f_{1}=f(t, u+w, z+h(t, u+w, \varepsilon), \varepsilon)-f(t, u, h(t, u, \varepsilon), \varepsilon) \\
Z=g(t, u+w, z+h(t, u+w, \varepsilon), \varepsilon)-g(t, u+w, h(t, u+w, \varepsilon), \varepsilon)- \\
-\varepsilon \frac{\partial h}{\partial \chi}(t, u+w, \varepsilon)[f(t, u+w, z+h(t, u+w, \varepsilon), \varepsilon)-f(t, u+w, h(t, u+w, \varepsilon), \varepsilon)] .
\end{gathered}
$$

This last system has the integral manifold $w=\varepsilon H(t, u, z, \varepsilon)$, where function H satisfies the inequalities

$$
\begin{gather*}
|H(t, u, z, \varepsilon)| \leq a|z| \tag{1.4}\\
|H(t, u, z, \varepsilon)-H(t, \bar{u}, z, \varepsilon)| \leq b|z| \cdot|u-\bar{u}| \tag{1.5}\\
|H(t, u, z, \varepsilon)-H(t, u, \bar{z}, \varepsilon)| \leq c|z-\bar{z}|
\end{gather*}
$$

with the positive constants a, b, c for $t \in R, u \in E^{m},|z| \leq \rho_{1} \leq \rho, 0<\varepsilon \leq \varepsilon_{1} \leq \varepsilon_{0}$.
The proof of this statement is similar to the proof of the existence of "stable manifold" in [9]. The flow on this manifold is governed by the $(m+n)$ dimensional system (2), (3) where

$$
F(t, u, \varepsilon)=f(t, u, h(t, u, \varepsilon), \varepsilon), G(t, u, v, \varepsilon)=Z(t, u, \varepsilon H(t, u, v, \varepsilon), v, \varepsilon)
$$

Note that $G(t, u, 0, \varepsilon)=0$.
Let $\chi=\chi(t), y=y(t)$ be the solution of (1) and $\left|y_{0}-h\left(t_{0}, \chi_{0}, \varepsilon\right)\right| \leq \rho_{1}$, where $\chi_{0}=\chi\left(t_{0}\right), y_{0}=y\left(t_{0}\right)$. Then

$$
\begin{align*}
& \chi=u+\varepsilon H(t, u, v, \varepsilon) \tag{1.6}\\
& y=v+h(t, \chi, \varepsilon)=v+h(t, u+\varepsilon H(t, u, v, \varepsilon), \varepsilon)
\end{align*}
$$

where $u=u(t), v=v(t)$ is the solution of (2), (3), $v_{0}=v\left(t_{0}\right)=y_{0}-h\left(t_{0}, \chi_{0}, \varepsilon\right)$ and u_{0} $=u\left(t_{0}\right)$ can be found as asymptotic expansion $u_{0}=u_{0}^{0}+\varepsilon u_{0}^{1}+\ldots$ from the equation

$$
\begin{equation*}
\chi_{0}=u_{0}+\varepsilon H\left(t_{0}, u_{0}, v_{0}, \varepsilon\right) . \tag{1.7}
\end{equation*}
$$

It is easy to see that $u_{0}^{0}=\chi_{0}, u_{0}^{1}=-H\left(t_{0}, \chi_{0}, y_{0}-h_{0}\left(t_{0}, \chi_{0}\right), 0\right)$.
The next result, however, shows that, in principle, function H can be approximated to any degree of accuracy with respect to ε.

Let $D(\varepsilon H)=\varepsilon \frac{\partial H}{\partial t}+\varepsilon \frac{\partial H}{\partial u} F(t, u, \varepsilon)+\frac{\partial H}{\partial v} Z(t, u, \varepsilon H, v, \varepsilon)-f_{1}(t, u, \varepsilon H, v, \varepsilon)$.
If $D(\varepsilon \bar{H})=O\left(\varepsilon^{\kappa+1}\right)$, where κ is a positive integer, then $|H-\bar{H}|=O\left(\varepsilon^{\kappa}\right)$.
In many cases H can be found as asymptotic expansion $\varepsilon H=\varepsilon H_{0}(t, u, v)$ $+\varepsilon^{2} \ldots$ from the equation $D(\varepsilon H)=0$ or

$$
\begin{equation*}
\varepsilon \frac{\partial H}{\partial t}+\frac{\partial H}{\partial u} F(t, u, \varepsilon)+\frac{\partial H}{\partial v} Z(t, u, \varepsilon H, v, \varepsilon)=f_{1}(t, u, \varepsilon H, v, \varepsilon) \tag{1.8}
\end{equation*}
$$

Note that if the hypotheses (i) (iii) hold only at a bounded domain with respect to t and χ, then $y=h(t, \chi, \varepsilon)$ and $w=\varepsilon H(t, u, z, \varepsilon)$ are local integral manifolds.

The stability problem

Let $u=u(t), v=v(t)$ be any solution of (2), (3) such that $u\left(t_{0}\right)=u_{0}, v\left(t_{0}\right)=v_{0}$, $\left|v_{0}\right| \leq \rho_{1}$. Hypothesis (ii) implies

$$
\begin{equation*}
|v(t)| \leq K e^{-\frac{\beta}{\varepsilon}\left(t-t_{0}\right)} \quad t \geq t_{0} \tag{2.1}
\end{equation*}
$$

where K is a positive constant, $0<\varepsilon \leq \varepsilon_{1}$.
It is well known that for any solution $\chi=\chi(t), y=y(t), \chi\left(t_{0}\right)=\chi_{0}, y\left(t_{0}\right)=y_{0}$ of (1) with sufficiently small $\left|y_{0}-h\left(t_{0}, \chi_{0}, \varepsilon\right)\right|$ there is a solution $u=u(t), u\left(t_{0}\right)$ $=u_{0}$ of (2) such that

$$
\begin{equation*}
\chi=u(t)+\varphi_{1}(t), \quad y(t)=h(t, u(t), \varepsilon)+\varphi_{2}(t) \tag{2.2}
\end{equation*}
$$

where $\varphi_{i}(t)=O\left(e^{-\frac{\beta}{\varepsilon}\left(t-t_{0}\right)}\right)$ as $t-t_{0} \rightarrow \infty$ [2].
Now we have the exact expressions for φ_{1} and φ_{2}

$$
\begin{aligned}
& \varphi_{1}=\varepsilon H(t, u(t), v(t), \varepsilon) \\
& \varphi_{2}=h(t, u(t)+\varepsilon H(t, u(t), v(t), \varepsilon), \varepsilon)-h(t, u(t), \varepsilon)+v(t)
\end{aligned}
$$

and the equation (1.7) for u_{0}.
The representation (2.2) tells us that (2) contains all the necessary information needed to determine the asymptotic behaviour of the solutions of (1).

Let $u(t)$ be a solution of (2). Then $\chi=u(t), y=h(t, u(t), \varepsilon)$ is a solution of (1). If $u(t)$ as a solution of (2) is stable (asymptotically stable, unstable), then ($u(t)$, $h(t, u(t), \varepsilon))$ as a solution of (1) is stable (asymptotically stable, unstable) [2].

Initial and boundary value problems

If we have the initial condition $\chi\left(t_{0}\right)=\chi_{0}, y\left(t_{0}\right)=y_{0}$ for (1) then for (2), (3) we obtain the following initial condition $u\left(t_{0}\right)=u_{0}, v\left(t_{0}\right)=v_{0}$, where $v_{0}=y_{0}$ $-h\left(t_{0}, \chi_{0}, \varepsilon\right)$ and u_{0} is the solution of the equation

$$
\begin{equation*}
u_{0}=\chi_{0}-\varepsilon H\left(t_{0}, u_{0}, v_{0}, \varepsilon\right) \tag{3.1}
\end{equation*}
$$

If we have a boundary value problem for (1), then for (2), (3) we obtain coupled boundary conditions, which can be decoupled in some cases, when such values as $e^{-\frac{1}{\varepsilon}}$ can be neglected.

Everywhere below we let $O\left(e^{-\frac{1}{\varepsilon}}\right)=0$ in boundary conditions.
Example 3.1. Consider the system

$$
\begin{align*}
\dot{\chi} & =y \tag{3.2}\\
\varepsilon \dot{y} & =A(t, \chi) y+f(t, \chi)
\end{align*}
$$

where $\chi, y \in E^{n}$, matrix-function A and vector-function f are smooth and bounded, eigenvalues of A have negative real parts. This system has the integral manifold $y=h(t, \chi, \varepsilon)$. From the equation $\varepsilon \frac{\partial h}{\partial t}+\varepsilon \frac{\partial h}{\partial \chi} h=A h+f$, which is analogous to (1.2), we obtain $h=h_{0}(t, \chi)+\varepsilon h_{1}(t, \chi)+\varepsilon^{2} \ldots$ where $h_{0}=-A^{-1} f$, $h_{1}=A^{-1}\left(\frac{\partial h_{0}}{\partial t}+\frac{\partial h_{0}}{\partial \chi} h_{0}\right)$. In this case (2) is $\dot{u}=h(t, u, \varepsilon)$ and the system (1.3) is

$$
\begin{aligned}
\dot{u} & =h(t, u, \varepsilon) \\
\dot{w} & =h(t, u+w, \varepsilon)-h(t, u, \varepsilon)+z \\
\varepsilon \dot{z} & =\left[A(t, u+w)-\varepsilon \frac{\partial h}{\partial \chi}(t, u+w, \varepsilon)\right] z
\end{aligned}
$$

This last system has the integral manifold $w=\varepsilon H(t, u, z, \varepsilon)$ and H can be found from the equation

$$
\begin{gathered}
\varepsilon \frac{\partial H}{\partial t}+\varepsilon \frac{\partial H}{\partial u} h(t, u, \varepsilon)+\frac{\partial H}{\partial z}\left[A(t, u+\varepsilon H)-\varepsilon \frac{\partial h}{\partial \chi}(t, u+\varepsilon H, \varepsilon)\right] z= \\
=z+h(t, u+\varepsilon H, \varepsilon)-h(t, u, \varepsilon)
\end{gathered}
$$

as asymptotic expansion $\varepsilon H=\varepsilon A^{-1}(t, u) z+\varepsilon^{2} \ldots$
Thus we have the representation

$$
\chi=u+\varepsilon A^{-1}(t, u) v+\varepsilon^{2} \ldots, \quad y=v+h_{0}(t, \chi)+\varepsilon h_{1}(t, \chi)+\varepsilon^{2} \ldots
$$

and the equations

$$
\begin{gather*}
\dot{u}=h_{0}(t, u)+\varepsilon h_{1}(t, u)+\varepsilon^{2} \ldots \tag{3.3}\\
\varepsilon \dot{v}=\left[A\left(t, u+\varepsilon A^{-1}(t, u) v\right)-\varepsilon \frac{\partial h_{0}}{\partial \chi}(t, u)+\varepsilon^{2} \ldots\right] v . \tag{3.4}
\end{gather*}
$$

If we have the initial condition $\chi\left(t_{0}\right)=\chi_{0}, y\left(t_{0}\right)=y_{0}$ for (3.2) then for (3.3) we obtain the initial condition $u\left(t_{0}\right)=\chi_{0}-A^{-1}\left(t_{0}, \chi_{0}\right)\left[y_{0}\right.$ $\left.-A^{-1}\left(t_{0}, \chi_{0}\right) f\left(t_{0}, \chi_{0}\right)\right]+\varepsilon^{2} \ldots$ and for (3.4) we obtain $v\left(t_{0}\right)=y_{0}-h\left(t_{0}, \chi_{0}, \varepsilon\right)$.

If we have the boundary condition

$$
\chi(0)+y(0)=0, \quad \chi(0)+\chi(1)+y(1)=0
$$

for (3.2) then for (3.3) we obtain the boundary condition

$$
u(0)+u(1)+h_{0}(1, u(1))+\varepsilon\left\{h_{1}(1, u(1))-A^{-1}(0, u(0))\left[u(0)+h_{0}(0, u(0))\right]\right\}+\varepsilon^{2} \ldots
$$

$$
=0
$$

For (3.4) we obtain the initial condition $v(0)=v_{0}^{0}+\varepsilon v_{1}^{0}+\varepsilon^{2} \ldots$, where

$$
\begin{gathered}
v_{0}^{0}=-u(0)-h_{0}(0, u(0)) \\
v_{0}^{1}=-A^{-1}(0, u(0)) v_{0}^{0}-\frac{\partial h_{0}}{\partial \chi}(0, u(0)) A^{-1}(0, u(0)) v_{0}^{0}-h_{1}(0, u(0)) .
\end{gathered}
$$

Linear state regulator problem

Let us consider the problem of minimization of the functional

$$
\begin{equation*}
I_{\varepsilon}=\frac{1}{2} \chi^{\prime}(1) F \chi(1)+\frac{1}{2} \int_{0}^{1}\left[\chi^{\prime}(t) Q(t) \chi(t)+u^{\prime}(t) R(t) u(t)\right] \mathrm{d} t \tag{4.1}
\end{equation*}
$$

under the restrictions

$$
\begin{array}{rlrl}
\dot{y} & =A_{1}(t) y+A_{2}(t) z+B_{1}(t) u, & & y(0)=y_{0}, \tag{4.2}\\
& & y \in E^{m} \\
\varepsilon \dot{z} & =A_{3}(t) y+A_{4}(t) z+\varepsilon B_{2}(t) u, & & z(0)=z_{0}, \\
& z \in E^{n}
\end{array}
$$

where $u \in E^{k}$

$$
\begin{gathered}
\chi=\binom{y}{z}, \quad Q=Q^{\prime}=\left(\begin{array}{ll}
Q_{1} & Q_{2} \\
Q_{2}^{\prime} & Q_{3}
\end{array}\right) \geq 0, \quad F(\varepsilon)=F^{\prime}(\varepsilon)=\left(\begin{array}{cc}
F_{1} & \varepsilon F_{2} \\
\varepsilon F_{2}^{\prime} & \varepsilon F_{3}
\end{array}\right) \geq 0, \\
R=R^{\prime}>0 .
\end{gathered}
$$

It is well known (see [7]), that this problem has a linear feedback solution given by

$$
u=-R^{-1}\binom{B_{1}}{B_{2}}^{\prime}\left(\begin{array}{cc}
K_{1} & \varepsilon K_{2} \\
\varepsilon K_{2}^{\prime} & \varepsilon K_{3}
\end{array}\right) \chi
$$

where K_{1}, K_{2}, K_{3} is the solution of the initial value problem for the system

$$
\begin{gathered}
\dot{K}_{1}=-K_{1} A_{1}-A_{1}^{\prime} K_{1}-K_{2} A_{3}-A_{3}^{\prime} K_{2}^{\prime}+K_{1} S_{1} K_{1}-Q_{1}+\varepsilon K_{1} S_{2} K_{2}^{\prime}+ \\
\\
\quad \varepsilon K_{2} S_{2}^{\prime} K_{1}+\varepsilon^{2} \ldots=f\left(t, K_{1}, K_{2}, K_{3}, \varepsilon\right) \\
\varepsilon \dot{K}_{2}=-K_{1} A_{2}-K_{2} A_{4}-A_{3}^{\prime} K_{3}-Q_{2}-\varepsilon A_{1}^{\prime} K_{2}+\varepsilon K_{1} S_{1} K_{2}+ \\
\quad+\varepsilon K_{1} S_{2} K_{3}+\varepsilon^{2} \ldots=g_{1}\left(t, K_{1}, K_{2}, K_{3}, \varepsilon\right) \\
\varepsilon \dot{K}_{3}=-K_{3} A_{4}-A_{4}^{\prime} K_{3}-Q_{3}-\varepsilon K_{2}^{\prime} A_{2}-\varepsilon A_{2}^{\prime} K_{2}+\varepsilon^{2} \ldots=g_{2}\left(t, K_{1}, K_{2}, K_{3}, \varepsilon\right) \\
K_{1}(1)=F_{1}, \quad K_{2}(1)=F_{2}, \quad K_{3}(1)=F_{3} \\
S_{1}=B_{1} R^{-1} B_{1}^{\prime}, \quad S_{2}=B_{1} R^{-1} B_{2}^{\prime}, \quad S_{3}=B_{2} R^{-1} B_{2}^{\prime} .
\end{gathered}
$$

In this case we have the representation (1.6) in the form

$$
\begin{gathered}
K_{1}=U+\varepsilon H\left(t, U, V_{1}, V_{2}, \varepsilon\right), \quad K_{2}=V_{1}+P_{1}\left(t, K_{1}, \varepsilon\right), \\
K_{3}=V_{2}+P_{2}\left(t, K_{1}, \varepsilon\right)
\end{gathered}
$$

where U is the solution of the equation

$$
\begin{equation*}
\dot{U}=f\left(t, U, P_{1}(t, U, \varepsilon), P_{2}(t, U, \varepsilon), \varepsilon\right) \tag{4.3}
\end{equation*}
$$

and V_{1}, V_{2} satisfy the system

$$
\begin{equation*}
\varepsilon \dot{V}_{1}=g_{3}\left(t, U, V_{1}, V_{2}, \varepsilon\right), \quad \varepsilon \dot{V}_{2}=g_{4}\left(t, U, V_{1}, V_{2}, \varepsilon\right) \tag{4.4}
\end{equation*}
$$

where

$$
\begin{aligned}
g_{i+2}= & g_{i}\left(t, U+\varepsilon H, V_{1}+P_{1}, V_{2}+P_{2}, \varepsilon\right)-g_{i}\left(t, V+\varepsilon H, P_{1}, P_{2}, \varepsilon\right)- \\
& -\frac{\partial P_{i}}{\partial K_{1}}(t, U+\varepsilon H, \varepsilon)\left[f\left(t, U+\varepsilon H, V_{1}+P_{1}, V_{2}+P_{2}, \varepsilon\right)\right. \\
& \left.\quad-f\left(t, U+\varepsilon H, P_{1}, P_{2}, \varepsilon\right)\right] \\
H & =H\left(t, U, V_{1}, V_{2}, \varepsilon\right), \quad P_{i}=P_{i}(t, V+\varepsilon H, \varepsilon), \quad i=1,2 .
\end{aligned}
$$

Matrix-functions H, P_{1}, P_{2} can be represented as asymptotic expansions

$$
\begin{aligned}
& P_{i}=P_{i}^{0}\left(t, K_{1}\right)+\varepsilon P_{i}^{1}\left(t, K_{1}\right)+\varepsilon^{2} \ldots, \\
& \varepsilon H=\varepsilon H_{1}\left(t, U, V_{1}, V_{2}\right)+\varepsilon^{2} \ldots i=1,2,
\end{aligned}
$$

where P_{2}^{0} is the solution of the equation $-P_{2}^{0} A_{4}-A_{4}^{\prime} P_{2}^{0}-Q_{3}=0$ and $P_{1}^{0}=$ $-\left(K_{1} A_{2}+A_{3}^{\prime} P_{2}^{0}+Q_{2}\right) A_{4}^{-1} ; P_{2}^{1}$ is the solution of the equation $\dot{P}_{2}^{0}=-\left(P_{1}^{0}\right)^{\prime} A_{2}$ $-A_{2}^{\prime} P_{1}^{0}-P_{2}^{1} A_{4}-A_{4}^{\prime} P_{1}^{1}$ and

$$
\begin{gathered}
P_{1}^{1}=\left\{\frac{\partial}{\partial t} P_{1}^{0}+\left[-K_{1} A_{1}-A_{1}^{\prime} K_{1}-P_{1}^{0} A_{3}-A_{3}^{\prime} P_{1}^{0}+K_{1} S_{1} K_{1}-Q_{1}\right] A_{2} A_{4}^{-1}-\right. \\
\left.A_{1}^{\prime} P_{1}^{0}-A_{3}^{\prime} P_{2}^{1}+K_{1} S_{1} P_{1}^{0}+K_{1} S_{2} P_{2}^{0}\right\} A_{4}^{-1} .
\end{gathered}
$$

For H_{1} we obtain an expression

$$
H_{1}=V_{1} A_{4}^{-1} A_{3}+\left(A_{4}^{-1} A_{3}\right)^{\prime} V_{1}+\left(A_{4}^{-1} A_{3}\right)^{\prime} V_{2} A_{4}^{-1} A_{3}
$$

Finally, for (4.3) we have the initial condition

$$
U(1)=F_{1}-\varepsilon H_{1}\left(1, F_{1}, F_{2}-P_{1}^{0}\left(1, F_{1}\right), F_{3}-P_{2}^{0}\left(1, F_{1}\right)\right)
$$

and for (4.4) we have the initial condition

$$
V_{1}(1)=F_{2}-P_{1}\left(1, F_{1}, \varepsilon\right), \quad V_{2}(1)=F_{3}-P_{2}\left(1, F_{1}, \varepsilon\right) .
$$

Systems with two small parameters

Consider the system

$$
\begin{array}{r}
\dot{\chi}_{0}=f_{0}\left(t, \chi_{0}, \chi_{1}, \chi_{2}, \varepsilon, \mu\right) \\
\varepsilon \dot{\chi}_{1}=f_{1}\left(t, \chi_{0}, \chi_{1}, \chi_{2}, \varepsilon, \mu\right) \tag{5.1}\\
\varepsilon \mu \dot{\chi}_{2}=f_{2}\left(t, \dot{\chi}_{0}, \chi_{1}, \chi_{2}, \varepsilon, \mu\right)
\end{array}
$$

where χ_{i} and f_{i} vary in $E^{n_{i} \cdot} i=0,1,2, \varepsilon$ and μ are small positive parameters. Let us suppose that (5.1) satisfies the following hypotheses.
(i) The equation $f_{2}\left(t, \chi_{0}, \chi_{1}, \chi_{2}, 0,0\right)=0$ has the isolated solution χ_{2} $=h_{20}\left(t, \chi_{0}, \chi_{1}\right)$ for $t \in R, \chi_{0} \in E^{n_{0}}, \chi_{1} \in E^{n_{1}}$ and the function h_{20} and its first and second partial derivatives with respect to all variables are uniformly continuous and bounded for $t \in R, \chi_{i} \in E^{n_{i}}, i=0,1$.
(ii) Functions $f_{i}, i=0,1,2$ and their first and second partial derivatives with respect to all variables are uniformly continuous and bounded for $t \in R$, $\chi_{i} \in E^{n_{i}}, i=0,1,\left|\chi_{2}-h_{20}\left(t, \chi_{0}, \chi_{1}\right)\right| \leq \rho, 0 \leq \varepsilon \leq \varepsilon_{0}, 0 \leq \mu \leq \mu_{0}$.
(iii) The eigenvalues $\lambda_{i}=\lambda_{i}\left(t, \chi_{0}, \chi_{1}\right), i=1, \ldots, n_{2}$ of the matrix
$\frac{\partial f_{2}}{\partial \chi_{2}}\left(t, \chi_{0}, \chi_{1}, h_{20}\left(t, \chi_{0}, \chi_{1}\right), 0,0\right)$ satisfy the inequality $\operatorname{Re} \lambda_{i} \leq-2 \beta<0, t \in R$, $\chi_{i} \in E^{n_{i}}, i=0,1$.

These hypotheses are analogous to (i)-(iii) and as in Section 1 there exist functions $h_{2}=h_{2}\left(t, \chi_{0}, \chi_{1}, \varepsilon, \mu\right), H_{i}=H_{i}\left(t, y_{0}, y_{1}, y_{2}, \varepsilon, \mu\right), i=1,2$ such that

$$
\begin{aligned}
& \chi_{0}=y_{0}+\varepsilon \mu H_{0}\left(t, y_{0}, y_{1}, y_{2}, \varepsilon, \mu\right) \\
& \chi_{1}=y_{1}+\mu H_{1}\left(t, y_{0}, y_{1}, y_{2}, \varepsilon, \mu\right) \\
& \chi_{2}=y_{2}+h_{2}\left(t, \chi_{0}, \chi_{1}, \varepsilon, \mu\right)
\end{aligned}
$$

The function h_{2} defines the integral manifold $\chi_{2}=h_{2}\left(t, \chi_{0}, \chi_{1}, \varepsilon, \mu\right)$ of (5.1). If $f_{i}, i=0,1,2$ are sufficiently smooth with respect to all variables then h_{2} can be found as asymptotic expansion $h_{2}=h_{20}\left(t, \chi_{0}, \chi_{1}, \varepsilon\right)+\mu h_{21}\left(t, \chi_{0}, \chi_{1}, \varepsilon\right)+\mu^{2} \ldots$ from the equation

$$
\begin{aligned}
& \varepsilon \mu \frac{\partial h_{2}}{\partial t}+\varepsilon \mu \frac{\partial h_{2}}{\partial \chi_{0}} f_{0}+\mu \frac{\partial h_{2}}{\partial \chi_{1}} f_{1}=f_{2} \\
& f_{i}=f_{i}\left(t, \chi_{0}, \chi_{1}, h_{2}, \varepsilon, \mu\right), \quad i=0,1,2 .
\end{aligned}
$$

The functions H_{0}, H_{1} define the integral manifold $w_{0}=\varepsilon \mu H_{0}\left(t, y_{0}, y_{1}\right.$,
$\left.y_{2}, \varepsilon, \mu\right), w_{1}=\mu H_{1}\left(t, y_{0}, y_{2}, \varepsilon, \mu\right)$ of the system

$$
\begin{aligned}
\dot{y}_{0} & =F_{0}\left(t, y_{0}, y_{1}, \varepsilon, \mu\right) \\
\varepsilon \dot{y}_{1} & =F_{1}\left(t, y_{0}, y_{1}, \varepsilon, \mu\right) \\
\dot{w}_{0} & =f_{3}\left(t, y_{0}, y_{1}, w_{0}, w_{1}, z_{2}, \varepsilon, \mu\right) \\
\varepsilon \dot{w}_{1} & =f_{4}\left(t, y_{0}, y_{1}, w_{0}, w_{1}, z_{2}, \varepsilon, \mu\right) \\
\varepsilon \mu \dot{z}_{2} & =Z_{2}\left(t, y_{0}, y_{1}, w_{0}, w_{1}, z_{2}, \varepsilon, \mu\right)
\end{aligned}
$$

where

$$
\begin{gathered}
F_{i}=f_{i}\left(t, y_{0}, y_{1}, h_{2}\left(t, y_{0}, y_{1}, \varepsilon, \mu\right), \varepsilon, \mu\right) \\
f_{i+3}=f_{i}\left(t, y_{0}+w_{0}, y_{1}+w_{1}, z_{2}+h_{2}\left(t, y_{0}+w_{0}, y_{1}+w_{1}, \varepsilon, \mu\right)\right)- \\
-f_{i}\left(t, y_{0}, y_{1}, h_{2}\left(t, y_{0}, y_{1}, \varepsilon, \mu\right)\right), \quad i=0,1 . \\
Z_{2}=\Delta f_{2}-\varepsilon \mu \frac{\partial h_{2}}{\partial \chi_{0}} \Delta f_{0}-\mu \frac{\partial h_{2}}{\partial \chi_{1}} \Delta f_{1} \\
\Delta f_{i}=f_{i}\left(t, y_{0}+w_{0}, y_{1}+w_{1}, z_{2}+h_{2}, \varepsilon, \mu\right)-f_{i}\left(t, y_{0}+w_{0}, y_{1}+w_{1}, h_{2}, \varepsilon, \mu\right) \\
h_{2}=h_{2}\left(t, y_{0}+w_{0}, y_{1}+w_{1}, \varepsilon, \mu\right), \quad i=0,1,2
\end{gathered}
$$

and can be found as asymptotic expansions $H_{i}=H_{i 0}\left(t, y_{0}, y_{1}, y_{2}, \varepsilon\right)$ $+\mu H_{i 1}\left(t, y_{0}, y_{1}, y_{2}, \varepsilon\right)+\mu^{2} \ldots$ from the equations
where

$$
\varepsilon \mu \frac{\partial H_{i}}{\partial t}+\varepsilon \mu \frac{\partial H_{i}}{\partial y_{0}} F_{0}+\mu \frac{\partial H_{i}}{\partial y_{1}} F_{1}+\frac{\partial H_{i}}{\partial y_{2}} Z_{2}=f_{i+3}
$$

$$
\begin{gathered}
H_{i}=H_{i}\left(t, y_{0}, y_{1}, y_{2}, \varepsilon, \mu\right), \quad F_{i}=F_{i}\left(t, y_{0}, y_{1}, \varepsilon, \mu\right) \\
Z_{2}=Z_{2}\left(t, y_{0}, y_{1}, \varepsilon \mu H_{0}, \mu H_{1}, y_{2}, \varepsilon, \mu\right) \\
f_{i+3}=f_{i+3}\left(t, y_{0}, y_{1}, \varepsilon \mu H_{0}, \mu H_{1}, y_{2}, \varepsilon, \mu\right), \quad i=0,1 .
\end{gathered}
$$

The variables y_{0}, y_{1}, y_{2} satisfy the equations
where

$$
\begin{gather*}
\dot{y}_{0}=F_{0}\left(t, y_{0}, y_{1}, \varepsilon, \mu\right) \tag{5.2}\\
\varepsilon \dot{y}_{1}=F_{1}\left(t, y_{0}, y_{1}, \varepsilon, \mu\right) \tag{5.3}\\
\varepsilon \mu \dot{y}_{2}=G_{2}\left(t, y_{0}, y_{1}, y_{2}, \varepsilon, \mu\right) \tag{5.4}
\end{gather*}
$$

$$
G_{2}=Z_{2}\left(t, y_{0}, y_{1}, \varepsilon \mu H_{0}, \mu H_{1}, y_{2}, \varepsilon, \mu\right), \quad H_{i}=H_{2}\left(t, y_{0}, y_{1}, y_{2}, \varepsilon, \mu\right)
$$

If we have the initial condition $\chi_{i}\left(t_{0}\right)=\chi_{i}^{0}, i=0,1,2$ for (5.1) then for (5.2)-(5.4) we obtain the initial condition $y_{i}\left(t_{0}\right)=y_{i}^{0}$ where $y_{2}^{0}=\chi_{2}^{0}$ $-h_{2}\left(t_{0}, \chi_{0}^{0}, \chi_{1}^{0}, \varepsilon, \mu\right)$ and y_{0}^{0}, y_{1}^{0} can be found from the equations

$$
\begin{align*}
& \chi_{0}^{0}=y_{0}^{0}+\varepsilon \mu H_{0}\left(t, y_{0}^{0}, y_{1}^{0}, y_{2}^{0}, \varepsilon, \mu\right) \tag{5.5}\\
& \chi_{1}^{0}=y_{1}^{0}+\mu H_{1}\left(t, y_{0}^{0}, y_{1}^{0}, y_{2,}^{0} \varepsilon, \mu\right) .
\end{align*}
$$

As earlier, the stability problem for (5.1) is equivalent to the stability problem for (5.2), (5.3) and for sufficiently small $\left|y_{2}^{0}\right|$ we obtain $\left|y_{2}(t)\right| \leq K_{2}\left|y_{2}^{0}\right| e^{-\frac{\beta}{\varepsilon \mu}\left(t-t_{0}\right)}, t \geq t_{0}$.

Now let us suppose that the system (5.2), (5.3) satisfies the following hypotheses.
(i) The equation $F_{1}\left(t, y_{0}, y_{1}, 0,0\right)=0$ has the isolated solution y_{1} $=h_{10}\left(t, y_{0}\right)$ for $t \in R, y_{0} \in E^{n_{0}}$. The function h_{10} and its first and second partial derivatives with respect to all variables are uniformly continuous and bounded for $t \in R, y_{0} \in E^{n_{0}}$.
(ii) The functions $F_{i}, i=0,1$ and their first and second partial derivatives with respect to all variables are uniformly continuous and bounded for $t \in R$, $y_{0} \in E^{n_{0}},\left|y_{1}-h_{10}\left(t, y_{0}\right)\right| \leq \rho_{1}, 0 \leq \varepsilon \leq \varepsilon_{1} \leq \varepsilon_{0}, 0 \leq \mu \leq \mu_{1} \leq \mu_{0}$.
(iii) The eigenvalues $\lambda_{i}=\hat{\lambda}_{i}\left(t, y_{0}\right), \quad i=1, \ldots, n_{1}$ of the matrix $\frac{\partial F_{1}}{\partial y_{1}}\left(t, y_{0}, h_{10}\left(t, y_{0}\right), 0,0\right)$ satisfy the inequality $\operatorname{Re} \lambda_{i} \leq-2 \alpha<0, \mathrm{t} \in R, y_{0} \in E^{n_{0}}$.

Under such assumptions which are analogous to (i)-(iii), the systems (5.2), (5.3) can be decomposed by the transformation

$$
y_{0}=u+\varepsilon H(t, u, v, \varepsilon, \mu), \quad y_{1}=v+h\left(t, y_{0}, \varepsilon, \mu\right)
$$

The functions h and H can be found as asymptotic expansions h $=h_{0}\left(t, y_{0}, \mu\right)+\varepsilon h_{1}\left(t, y_{0}, \mu\right)+\varepsilon^{2} \ldots, \quad H=H_{0}(t, u, v, \mu)+\varepsilon H_{1}(t, u, v, \mu)+\varepsilon^{2} \ldots$ from equations which are analogous to (1.2) and (1.8).

Finally, we obtain the system

$$
\begin{aligned}
\dot{u} & =F(t, u, \varepsilon, \mu) \\
\varepsilon \dot{v} & =G(t, u, v, \varepsilon, \mu) \\
\varepsilon \mu \dot{y}_{2} & =G_{1}\left(t, u, v, y_{2}, \varepsilon, \mu\right)
\end{aligned}
$$

where

$$
\begin{gathered}
F=F_{0}(t, u, h(t, u, \varepsilon, \mu), \varepsilon, \mu) \\
G=F_{1}(t, u+\varepsilon H, v+h(t, u+\varepsilon H, \varepsilon, \mu), \varepsilon, \mu)- \\
-F_{1}(t, u+\varepsilon H, h(t, u+\varepsilon H, \varepsilon, \mu), \varepsilon, \mu)- \\
-\varepsilon \frac{\partial h}{\partial y_{0}}(t, u+\varepsilon H, \varepsilon, \mu)\left[F_{0}(t, u+\varepsilon H, v+h(t, u+\varepsilon H, \varepsilon, \mu), \varepsilon, \mu)-\right. \\
\left.-F_{0}(t, u+\varepsilon H, h(t, u+\varepsilon H, \varepsilon, \mu), \varepsilon, \mu)\right] \\
G_{1}=G_{2}\left(t, u+\varepsilon H, v+h(t, u+\varepsilon H, \varepsilon, \mu), y_{2}, \varepsilon, \mu\right), \\
H=H(t, u, v, \varepsilon, \mu) .
\end{gathered}
$$

It is easy to obtain the initial conditions for this system. Moreover, the stability problem for (5.1) is equivalent to the stability problem for the reduced system

$$
\dot{u}=F(t, u, \varepsilon, \mu) .
$$

Linear systems

Consider the following linear singularly perturbed system

$$
\begin{equation*}
\chi=A_{11} \chi+A_{12} y+f_{1}, \quad \varepsilon \dot{y}=A_{21} \chi+A_{22} y+f_{2} \tag{6.1}
\end{equation*}
$$

where χ and $f_{1}=f_{1}(t, \varepsilon)$ vary in E^{m}, y and $f_{2}=f_{2}(t, \varepsilon)$ vary in $E^{n}, A_{i j}=A_{i j}(t, \varepsilon)$ $(i, j=1,2)$ are matrix-functions, $t \in R, \varepsilon$ is the small positive parameter.

Let us suppose that f_{i} and $A_{i j}(i, j=1,2)$ are bounded and smooth functions of t and ε and the eigenvalues $\lambda_{i}=\lambda_{i}(t)$ of $A_{22}(t, 0)$ satisfy the inequality $\operatorname{Re} \lambda_{i} \leq-2 \beta<0$.

Under such assumptions there exists a transformation

$$
\begin{equation*}
\chi=u+\varepsilon H(t, \varepsilon) v, \quad y=v+P(t, \varepsilon) \chi+p(t, \varepsilon) \tag{6.2}
\end{equation*}
$$

which is the analogue of (1.6) for the linear case. The new variables u and v satisfy the equations

$$
\begin{gather*}
\dot{u}=\left(A_{11}+A_{12} P\right) u+f_{1}+A_{12} p \tag{6.3}\\
\varepsilon \dot{v}=\left(A_{22}-\varepsilon P A_{12}\right) v . \tag{6.4}
\end{gather*}
$$

The matrices P, H and the vector-function p can be found as asymptotic expansions $P=P_{0}(t)+\varepsilon P_{1}(t)+\varepsilon^{2} \ldots, H=H_{0}(t)+\varepsilon H_{1}(t)+\varepsilon^{2} \ldots, P=P_{0}(t)$ $+\varepsilon P_{1}(t)+\varepsilon^{2} \ldots$ from the following equations

$$
\begin{gather*}
\varepsilon \dot{P}+\varepsilon P\left(A_{11}+A_{12} P\right)=A_{21}+A_{22} P \tag{6.5}\\
\varepsilon \dot{H}+H\left(A_{22}-\varepsilon P A_{12}\right)=\varepsilon\left(A_{11}+A_{12} P\right) H+A_{12} \tag{6.6}\\
\varepsilon \dot{p}+\varepsilon P f_{1}=\left(A_{22}-\varepsilon P A_{12}\right) p+f_{2} . \tag{6.7}
\end{gather*}
$$

It is a straightforward exercise to obtain an expression for P_{i}, H_{i}, p_{i} from these equations.

As for nonlinear systems, the stability of (6.3) is equivalent to the stability of (6.1), and the transformation (6.2) permits us to decouple initial and boundary value problems.

[^1]Now let us apply the transformation (6.2) to study the Ito equations [10]. Consider the system

$$
\begin{align*}
d \chi & =\left[A_{11} \chi+A_{12} y+f_{1}(t, \omega)\right] d t+G_{1}(t, \omega) d w \tag{6.8}\\
\varepsilon d y & =\left[A_{21} \chi+A_{22} y+f_{2}(t, \omega)\right] d t+G_{2}(t, \omega) d w
\end{align*}
$$

where $w(t, \omega)=\left(w_{1}(t, \omega), \ldots, w_{n+m+1}(t, \omega)\right)$ with w_{i} Wiener processes such

$$
\begin{gathered}
E\left[w_{j}(t, \omega)-w_{j}(s, \omega)\right]=0, \quad \text { for all } \quad t, s \in[0, \infty), \quad \omega \in \Omega \\
E\left\{\left[w_{j}(t, \omega)-w_{j}(s, \omega)\right]\left[w_{i}(t, \omega)-\omega_{i}(s, \omega)\right]\right\}=\delta_{j i}(t-s) .
\end{gathered}
$$

If F_{s} is the σ-algebra generated by $\{w(t)-w(\tau), \tau \leq t \leq s\}$ we assume $f_{j}(t$, and $G_{j}\left(t\right.$,) are measurable with respect to F_{s}; we assume also f_{j} and G_{j} are measurable on the product space $(0, \infty) \times \Omega$. Moreover

$$
\begin{gathered}
E\left[f_{1}^{*}(t, \omega) f_{1}(t, \omega)\right]+E\left[f_{2}^{*}(t, \omega) f_{2}(t, \omega)\right] \leq \alpha<\infty \\
\operatorname{Tr} E\left[G_{1}^{*}(t, \omega) G_{1}(t, \omega)\right]+\operatorname{Tr} E\left[G_{2}^{*}(t, \omega) G_{2}(t, \omega)\right] \leq \alpha_{1}<\infty
\end{gathered}
$$

for all $t \in[0, \infty)$.
Under these assumptions by the transformation (6.2) with $p=0$ we obtain the reduced system

$$
\begin{gathered}
d u=\left[A(t, \varepsilon) u+p_{1}(t, \varepsilon, \omega)\right] d t+F_{1}(t, \varepsilon, \omega) d w \\
\varepsilon d v=\left[B(t, \varepsilon) v+p_{2}(t, \varepsilon, \omega)\right] d t+F_{2}(t, \varepsilon, \omega) d w \\
A=A_{11}+A_{12} P, \quad B=A_{22}-\varepsilon P A_{12}, \quad p_{1}=(I+\varepsilon H P) f_{1}-H f_{2}, \quad p_{2}=f_{2} \\
-\varepsilon P f_{1} \\
F_{1}=(I+\varepsilon H P) G_{1}-H G_{2}, \quad F_{2}=G_{2}-\varepsilon P G_{1}
\end{gathered}
$$

Linear systems with two small parameters

Consider the linear analogue of (5.1):

$$
\begin{aligned}
\dot{\chi} & =A_{00} \chi_{0}+A_{01} \chi_{1}+A_{02} \chi_{2} \\
\varepsilon \dot{\chi}_{1} & =A_{10} \chi_{0}+A_{11} \chi_{1}+A_{12} \chi_{2} \\
\varepsilon \mu \dot{\chi}_{2} & =A_{20} \chi_{0}+A_{21} \chi_{1}+A_{22} \chi_{2}
\end{aligned}
$$

where $t \in R, \chi_{i} \in E^{n_{i}}, A_{i j}=A_{i j}(t, \varepsilon, \mu)$ are smooth and bounded matrix-functions, ε and μ are small positive parameters.

Let us suppose that the eigenvalues $\lambda_{i}=\lambda_{i}(t)\left(i=1, \ldots, n_{2}\right)$ of the matrix $A_{22}(t, 0,0)$ satisfy the inequality $\operatorname{Re} \lambda_{i} \leq-2 \beta<0$.

Our first step is to use the transformation

$$
\begin{aligned}
& \chi_{0}=y_{0}+\varepsilon \mu H_{0}(t, \varepsilon, \mu) y_{2}, \quad \chi_{1}=y_{1}+\mu H_{1}(t, \varepsilon, \mu) \\
& \chi_{2}=y_{2}+P_{0}(t, \varepsilon, \mu) \chi_{0}+P_{1}(t, \varepsilon, \mu) \chi_{1}
\end{aligned}
$$

to obtain the system

$$
\begin{align*}
\dot{y} & =B_{00} y_{0}+B_{01} y_{1} \\
\varepsilon \dot{y}_{1} & =B_{10} y_{0}+B_{11} y_{1} \tag{7.1}\\
\varepsilon \mu \dot{y}_{2} & =B_{22} y_{2}
\end{align*}
$$

where

$$
B_{i j}=A_{i j}+A_{i 2} P_{j} \quad(j, i=0,1), \quad B_{22}=A_{22}-\varepsilon \mu P_{0} A_{02}-\mu P_{1} A_{12} .
$$

The matrix-functions P_{0} and P_{1} can be found as asymptotic expansions $P_{0}=P_{0}^{0}(t, \varepsilon)+\mu P_{0}^{1}(t, \varepsilon)+\mu^{2} \ldots, \quad P_{1}=P_{1}^{0}(t, \varepsilon)+\mu P_{1}^{1}(t, \varepsilon)+\mu^{2} \ldots \quad$ from the equations

$$
\begin{aligned}
& \varepsilon \mu \dot{P}_{0}+\varepsilon \mu P_{0}\left(A_{00}+A_{02} P_{0}\right)+\mu P_{1}\left(A_{10}+A_{12} P_{0}\right)=A_{20}+A_{22} P_{0} \\
& \varepsilon \mu \dot{P}_{1}+\varepsilon \mu P_{0}\left(A_{01}+A_{02} P_{1}\right)+\mu P_{1}\left(A_{11}+A_{12} P_{1}\right)=A_{21}+A_{22} P_{1}
\end{aligned}
$$

and the matrix-functions H_{0} and H_{1} can be found as asymptotic expansions H_{0} $=H_{0}^{0}(t, \varepsilon)+\mu H_{0}^{1}(t, \varepsilon)+\mu^{2} \ldots, \quad H_{1}=H_{1}^{0}(t, \varepsilon)+\mu H_{1}^{1}(t, \varepsilon)+\mu^{2} \ldots$
from the equations

$$
\begin{aligned}
& \varepsilon \mu \dot{H}_{0}+H_{0} B_{22}=\varepsilon \mu B_{00} H_{0}+\mu B_{01} H_{1}+A_{02} \\
& \varepsilon \mu \dot{H}_{1}+H_{1} B_{22}=\varepsilon \mu B_{10} H_{0}+\mu B_{11} H_{1}+A_{12} .
\end{aligned}
$$

Now let us assume that the eigenvalues $\lambda_{i}=\lambda_{i}(t)\left(i=1, \ldots, n_{1}\right)$ of the matrix $B_{11}(t, 0,0)=A_{11}(t, 0,0)-A_{12}(t, 0,0) A_{22}^{-1}(t, 0,0) A_{21}(t, 0,0)$ satisfy the inequality $\operatorname{Re} \lambda_{i} \leq-2 \alpha<0, t \in \mathrm{R}$.

Our second step is to reduce system (7.1) to the form

$$
\begin{aligned}
\dot{u} & =\left(B_{00}+B_{01} P\right) u \\
\varepsilon \dot{v} & =\left(B_{11}-\varepsilon P B_{01}\right) v \\
\varepsilon \mu \dot{y}_{2} & =B_{22} y_{2}
\end{aligned}
$$

by the transformation

$$
y_{0}=u+\varepsilon H(t, \varepsilon, \mu) v, \quad y_{1}=v+P(t, \varepsilon, \mu) y_{0} .
$$

The matrix-functions H and P can be found as asymptotic expansions P $=P^{0}(t, \mu)+\varepsilon P^{1}(t, \mu)+\varepsilon^{2} \ldots, \quad H=H^{0}(t, \mu)+\varepsilon H^{1}(t, \mu)+\varepsilon^{2} \ldots \quad$ from the equations

$$
\begin{aligned}
\varepsilon \dot{P}+\varepsilon P\left(B_{00}+B_{01} P\right) & =B_{10}+B_{11} P \\
\varepsilon \dot{H}+H\left(B_{11}-\varepsilon P B_{01}\right) & =\varepsilon\left(B_{00}+B_{01} P\right) H+B_{01}
\end{aligned}
$$

which are analogous to (6.5), (6.6).

Nonlinear singularly perturbed regulator problem

In many optimal control problems the eigenvalues λ_{i} of the matrix $\frac{\partial g}{\partial y}$ (see the hypothesis (ii), Section 1) satisfy the inequalities

$$
\begin{equation*}
\operatorname{Re} \lambda_{i} \leq-2 \beta<0, \quad i=1, \ldots, k ; \quad \operatorname{Re} \lambda_{i} \geq 2 \beta>0, \quad i=k+1, \ldots, n . \tag{8.1}
\end{equation*}
$$

Let us suppose, for simplicity, that system (1) can be represented as

$$
\begin{align*}
\dot{\chi} & =f\left(t, \chi, y_{1}, y_{2}, \varepsilon\right) \\
\varepsilon \dot{y}_{1} & =A(t, \chi) y_{1}+g_{1}\left(t, \chi, y_{1}, y_{2}, \varepsilon\right) \tag{8.2}\\
\varepsilon \dot{y}_{2} & =B(t, \chi) y_{2}+g_{2}\left(t, \chi, y_{1}, y_{2}, \varepsilon\right)
\end{align*}
$$

where $y_{1} \in E^{k}, y_{2} \in E^{n-k}$, the eigenvalues of A satisfy (8.1) for $i=1, \ldots, k$ and the eigenvalues of B satisfy (8.1) for $i=k+1, \ldots, n$. Then (8.2) like the system (5.1) can be reduced to the form

$$
\begin{aligned}
\dot{u} & =F(t, u, \varepsilon) \\
\varepsilon \dot{v}_{1} & =A(t, u) v_{1}+G_{1}\left(t, u, v_{1}, \varepsilon\right) \\
\varepsilon \dot{v}_{2} & =B(t, u) v_{2}+G_{2}\left(t, u, v_{1}, v_{2}, \varepsilon\right) .
\end{aligned}
$$

Example 8.1. Let we have the problem of minimization of the functional

$$
I_{\varepsilon}=\frac{1}{2}\left(\chi^{2}(1)+y^{2}(1)\right)+\frac{1}{2} \int_{0}^{1}\left(\chi^{2}(t)+y^{2}(t)+u^{2}(t)\right) d t
$$

under the restrictions

$$
\dot{\chi}=y, \quad \varepsilon \dot{y}=f(\chi)+u, \quad \chi(0)=\chi_{0}, \quad y(0)=y_{0} .
$$

The boundary value problem by the maximum principle can be represented in the form (see [6])

$$
\begin{gathered}
\dot{\chi}=y, \quad \dot{p}=-\chi-q f^{\prime}(\chi), \quad \varepsilon \dot{y}=f(\chi)-q, \quad \varepsilon \dot{q}=-p-y \quad\left(f^{\prime}=\frac{d f}{d \chi}\right) \\
\chi(0)=\chi_{0}, \quad y(0)=y_{0}, \chi(1)=p(1), \quad y(1)=\varepsilon q(1)
\end{gathered}
$$

and $u=-q$.
This boundary value problem can be reduced to the boundary value problem

$$
\begin{aligned}
& \dot{u}_{1}=-u_{2}\left(1-\varepsilon f^{\prime}\right)+\varepsilon^{2} \ldots, \quad \dot{u}_{2}=-\left(u_{1}+f^{\prime} f\right)\left(1-\varepsilon f^{\prime}\right)+\varepsilon^{2} \ldots \quad\left(f=f\left(u_{1}\right)\right) \\
& u_{1}(0)-\varepsilon u_{2}(0)=\chi_{0}+\varepsilon y_{0}+\varepsilon^{2} \ldots, \quad u_{1}(1)=u_{2}(1)\left[1+\varepsilon\left(f^{\prime}\left(u_{1}(1)\right)+1\right)\right]+\varepsilon^{2} \ldots
\end{aligned}
$$

and two initial value problems

$$
\begin{array}{ll}
\varepsilon \dot{v}_{1}=-\left[1+\varepsilon f^{\prime}\left(u_{1}\right)+\varepsilon^{2} \ldots\right] v_{1}, & v_{1}(0)=\left[1+\varepsilon f^{\prime}\left(\chi_{0}\right)\right] y_{0}+u_{2}(0)+\varepsilon^{2} \ldots \\
\varepsilon \dot{v}_{2}=\left[1+\varepsilon f^{\prime}\left(u_{1}\right)+\varepsilon^{2} \ldots\right] v_{2}, & v_{2}(1)=-u_{2}(1)(1-\varepsilon)-\varepsilon f\left(u_{1}(1)\right)+\varepsilon^{2} \ldots
\end{array}
$$

by the final transformation

$$
\begin{array}{ll}
\chi=u+\varepsilon\left(v_{1}+v_{2}\right)+\varepsilon^{2} \ldots, & p=u_{2}+\varepsilon f^{\prime}\left(u_{1}\right)\left(v_{1}-v_{2}\right)+\varepsilon^{2} \ldots \\
y=v_{1}-v_{2}-p\left(1-\varepsilon f^{\prime}(\chi)\right)+\varepsilon^{2} \ldots, & q=v_{1}+v_{2}+f(\chi)-\varepsilon\left(\chi+f^{\prime}(\chi) f(\chi)\right)+\varepsilon^{2} \ldots
\end{array}
$$

It should be observed that the existence theorem of the integral manifold $y=h(t, \chi, \varepsilon)$ for (1) was obtained in [11], analogous result for linear systems was obtained in [12]. The method of approximating integral manifolds for linear and nonlinear systems and for systems with several small parameters was essentially used in $[3,4,13,14]$. Different aspects of the decomposition of singularly perturbed systems were studied in [15].

References

1. Митропольский, Ю. А.-Лыкова, О. Б.: Интегральные многообразия в нелинейной механике, "Наука", Москва, (1973).
2. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes in Math., vol. 840, Springer-Verlag, Berlin and New York (1981).
3. Стрыгин, В. В.-Соволев, В. А.: Влияние геометрических и кинетических параметров и диссипации энергии на устойчивость ориентации спутников с двойным вращением, Космические исследования, 3. 366-371. (1976).
4. Соволев, B. А.-Стрыгин, В. А.: О допустимости перехода к прецессионным уравнениям гироскопических систем, Известия АН СССР. МТТ, 5, 10-17. (1978).
5. Kokotovic, P. V.-O'Malley Jr., R. E.-Sannuti, P.: Singular perturbations and order reduction in control theory-an overview, Automatica J. IFAC, 12, 123-132. 12.
6. O'Malley Jr., R. E.: Singular perturbations and optimal control, Springer Lecture Notes in Math., vol. 680, Springer-Verlag, Berlin and New York 170-218. (1978).
7. Васильева, А. Б.-Дмитриев, М. Г.: Сингулярные возмущения в задачах оптимального управления, Итоги науки и техники ВИНИТИ, Математический анализ, 20. 3-77. (1982).
8. Ioannou, P. A.-Kokotovic, P. V.: Adaptive systems with reduced models, Springer Lecture Notes in Control and Inform. Sciences, vol. 47, Springer-Verlag, Berlin and New York (1983).
9. Kelley, A.: The stable, center-stable, center, center-unstable and unstable manifolds, J. Diff. Eqns., 3, 546-570. (1967).
10. Dragan, V.-Halanay, A.: Uniform asymptotic expressions for the fundamental matrix of singularly perturbed linear systems and applications, Springer Lecture Notes in Math., vol. 985, Springer--Verlag, Berlin and New York, 215-245. (1983).
11. ЗАдирака, К. В.: О нелокальном интегральном многообразии нерегулярно возмущенной дифференциальной системы, Укр. матем. ж., I, 47-6.63. (1965).
12. БАрис, Я. С.-Фодчук, В. И.: Исследование ограниченных решений линейных нерегулярно возмущенных систем методом интегральных многобразий, Укр. матем. ж., 3, 291-304. (1969).
13. Стригин, В. В.-Соволев, В. А.: Асимптотические методы в задачах о стабилизации вращающихся тел при помощи пассивных демпферов, Известия АН СССР. МТТ, 5, 24-31. (1977).
14. СоболЕв, В. А.: Исследование дифференциальных уравнений с малыми параметрами при производных методом интегральных многообразий, Труды семинара по дифференциальным уравнениям. Куйбышевский университет, 3, 78-85. (1977).
15. O'Malley, R. E.: Slow/fast decoupling for linear boundary value problems, Springer Lecture Notes in Math., vol. 985, Springer-Verlag, Berlin and New York 248-266. (1983).

Soboljev Vladyimir-Andrejevich, pr. Lenina 3, kv. 113, Kuibyshev, 443110 , USSR

[^0]: * This research was completed while the author was visiting the Department of Mathematics at the Budapest University of Technology

[^1]: 7 Periodica Polytechnica M. 31/I.

