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Abstract 

A method of integral manifolds is applied to study singularly perturbed differential 
systems. The use of this method permits us to solve a problem of decomposition of singularly 
perturbed systems. The applications of the method are illustrated on examples. 

Introduction 

The purpose of this paper is to study the problem of singularly perturbed 
systems decomposition by the method of integral manifolds [1, 2]. 

Throughout this paper En denotes the real n-dimensional Euclidean 
space and I . I the Euclidean norm on this space. 

The following system of differential equations is analyzed: 

i. = f(t, x, y, a), ay = g(t, x, y, a) (1) 

where X and f vary in Em, y and g vary in En, t ER, a is the small positive 
parameter. Such systems appear in some problems of mechanics [3,4J and 
control [5-8]. 

The object of our investigation is to obtain a transformation allowing to 
reduce (1) to system of form 

U= F(t, u, a) 

av = G(t, u, v, a) 

(2) 

(3) 

and to discuss some applications in stability, boundary value and control 
problems. 

* This research was completed while the author was visiting the Department of 
Mathematics at the Budapest University of Technology 
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Integral manifolds 

First we recall the definition of an integral manifold for the equation X 
= X(t, X), where X E en. A set Se R x En is said to be an integral manifold if for 
(to, Xo) E S, the solution (t, X(t)), X(to) = xo is in S for t E R. If (t, X(t» E S only at a 
finite interval, then we say that S is a local integral manifold. 

Let us suppose that (1) satisfies the following hypotheses. 
(i) Equation g(t, X, y, 0) =0 has the isolated solution y = ho(t, X) for t E R, 

X E Em. The function ho and its first and second partial derivatives with respect 
to all variables are uniformly continuous and bounded for t E R, X E Em. 

(ii) Functions J, 9 and their first and second partial derivatives with 
respect to all variables are uniformly continuous and bounded for t E R, X E Em, 
Iy-ho(t, x)1 ~p, O~e~eo· 

(iii) The eigenvalues )'i = )'i(t, X), i 1, ... , n of the matrix ~~ (t, X, ho, 0) satisfy 

the inequality ReJ. i ~ - 2[3 < 0, t E R, X E en. 
Under such assumptions the system (1) has the integral manifold y 

= h(t, X, e). The flow on this manifold is governed by the m-dimensional system 

X = f(t, X, h(t, X, e), e). (1.1) 

Function h is continuously differentiable and h(t, X, 0) = ho [1, 2]. 
If f and 9 are sufficiently smooth with respect to all variables, then h may 

be represented as asymptotic expansion h=ho(t,x)+eh 1(t,x)+e2 .... The 
coefficients of this expansion can be found from the equation 

oh oh 
eat +e oX f(t, X, h, e) = g(t, X, h, e) (1.2) 

by algebraic operations [3, 4]. 
Let us introduce new variables u, z, W, where u satisfies (1.1), Z = Y 

- h(t, X, e), W = X - u and consider the auxiliary differential system 

where 

u = f(t, u, h(t, u, e), e) 

W= f1 (t, U, w, z, e) 

ei = Z(t, u, w, z, e) 

f1 = f(t, U + w, Z + h(t, U + w, e), e) - f(t, u, h(t, u, e), e) 

(1.3) 

Z =g(t, U + w, Z+ h(t, U + w, e), e)-g(t, U +w, h(t, U + w, e), e)­

oh 
-e a (t, U + w, e) [f(t, U + w, z+h(t, U + w, e), e)- f(t, U + w, h(t, U + w, e), e)]. 

X 
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This last system has the integral manifold w = 8H(t, u, z, 8), where function 
H satisfies the inequalities 

IH(t, u, z, 8)1 ~alzl 

IH(t, u, z, 8)-H(t, u, z, e)1 ~ blzl'lu -ul 

IH(t, u, z, 8)- H(t, u, i, 8)1 ~ clz il 

(1.4) 

(1.5) 

with the positive constants a, b, c for t E R, U E Em, Izl ~Pl ~P, 0<8~81 ~80. 
The proof of this statement is similar to the proof of the existence of 

"stable manifold" in [9]. The flow on this manifold is governed by the (m + n)­
dimensional system (2), (3) where 

F(t, u, 8) = I{t, u, h(t, u, 8), 8), G(t, u, v, 8) = Z{t, u, 8H{t, u, v, 8), V, 8) 

Note that G{t, u, 0, 8)=0. 

Let 1..= X(t), y = y(t) be the solution of (1) and Iyo - h(to, 1..0, 8)1 ~ PI, where 
1..0 = X{to), Yo = y(to)· Then 

x= U +8H{t, U, v, 8) (1.6) 
y=v+h{t, X, 8)=v+h{t, u+8H{t, U, v, 8), 8) 

where U = u{t), v = v(t) is the solution of(2), (3), Vo = v (to) = Yo - h{to, 1..0, 8) and Uo 
= u(to) can be found as asymptotic expansion Uo = ug + 8U6 + . .. from the 
equation 

(1.7) 

It is easy to see th~t ug = 1..0' U6 = - H{to, 1..0, Yo - ho{to, 1..0), 0). 
The next result, however, shows that, in principle, function H can be 

approximated to any degree of accuracy with respect to 8. 

oH oH oH 
Let D{8H)=8-at +8a;F{t, U, 8)+ TvZ{t, u, 8H, v, 8)- Idt, u, 8H, v, 8). 

If D{8H) = 0(8"+ 1), where K is a positive integer, then IH-HI=0{8"). 
In many cases H can be found as asymptotic expansion 8H = 8H 0 (t, u, v) 

+82 ... from the equation D(8H)=0 or 

oH oH oH 
8 -",- + -a F{t, u, 8) + -a Z{t, u, 8H, v, 8) = 11 (t, u, 8H, v, 8) (1.8) 

ot U v 

Note that if the hypotheses (i)-(iii) hold only at a bounded domain with 
respect to t and X, then y = h{t, x, 8) and w = 8H{t, U, z, 8) are local integral 
manifolds. 
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The stability problem 

Let u = u(t), v = v(t) be any solution of(2), (3) such that u(to) = Uo, v(to) = vo, 
IVol:S:PI· Hypothesis (ii) implies 

. p 
Iv(t)I:s:Ke 7(1-ro) t?:.to (2.1) 

where K is a positive constant, 0 < 8:S: 81 . 

It is well known that for any solution X x(t), y = y(t), X(to) = XO' y(to) = yo 
of(1) with sufficiently smallIYo-h(to,Xo,8)1 there is a solution u=u(t), u(to) 
= uo of (2) such that 

x = u(t) + 4J dt), y(t) = h(t, u(t), 8)+ 4J2 (t) (2.2) 

p 
where 4J;(t) O(e-,(r-ro) as t-to~oc [2]. 

Now we have the exact expressions for 4Jl and 4J2 

4J 1 = 8H(t, u(t), v(t), e) 
4J2 h(t, u(t) + 8H(t, u(t), v(t), 8), 8) - h(t, U(t), 8) + V(t) , 

and the equation (1.7) for uo. 
The representation (2.2) tells us that (2) contains all the necessary 

information needed to determine the asymptotic behaviour of the solutions of 
(1 ). 

Let u(t) be a solution of (2). Then X = u(t), y = h(t, u(t), s) is a solution of(1). 
If u(t) as a solution of (2) is stable (asymptotically stable, unstable), then (u(t), 
h(t, u(t), 8») as a solution of (1) is stable (asymptotically stable, unstable) [2]. 

Initial and boundary value problems 

If we have the initial condition x(to) = Xo, y(to) Yo for (1) then for (2), (3) 
we obtain the following initial condition u(to) = Uo, v(to) = Vo, where Vo = Yo 
-h(to, Xo, 8) and Uo is the solution of the equation 

(3.1) 

If we have a boundary value problem for (1), then for (2), (3) we obtain 
coupled boundary conditions, which can be decoupled in some cases, when 

1 

such values as e - 7 can be neglected. 
1 

Everywhere below we let O( e - £) = 0 in boundary conditions. 
Example 3.1. Consider the system 

X=y 
8y = A(t, X)y + f(t, X) 

(3.2) 



INTEGRAL .\IANIFOLDS 91 

where X, yE En, matrix-function A and vector-function f are smooth and 
bounded, eigenvalues of A have negative real parts. This system has the integral 

'r h' ah ah I I 1, h' h . manIJold y = h(t, X, e). From t e equatIOn e -;;- + e -;:;- 1 = A 1 + , w 1C IS 
at OX 

analogous to (1.2), we obtain h = ho(t, x) + eh1 (t, X) + e2 
.•. where ho - A - 11, 

h 1 = A 1 (a~o + a~.o ho) . In this case (2) is u = h(t, u, e) and the system (1.3) is 
at cX 

., 
u=h(t, u, e) 

~V =h(t, u + w, e)-h(t, u, e) + z 

[ 
ah .J ei = A(t, u + w)-e -;:;- (t, u + w, e) z. 
cx 

This last system has the integral manifold w eH(t, u, Z, e) and H can be 
found from the equation 

cH aH aH [ ah J e-,,-+e-,,-h(t,u,e)+-,,- A(t,u+eH)-e-
a 

(t,u+eH,e) Z= 
at ou m X 

=z + h(t, u + eH, e)-h(t, u, e) 

as asymptotic expansion eH = eA - l(t, u)z + e2 •..• 

Thus we have the representation 

X= u +eA -l(t, u)v +e2 
. •• , y= v+ ho(t, X)+ ehdt, X)+ e2 . • I 

and the equations 

u = ho(t, u) + eh1 (t, u) + e2 
. • . (3.3) 

ev = [A(t, u + eA - l(t, u)v)- e a"ho (t, u) + e2 •.• J v. (3.4) 
cx 

If we have the initial condition X(to) = Xo, y(to) = Yo for (3.2) then for (3.3) 
we obtain the initial condition u(to)=Xo-A- 1(to,Xo)[yo 
- A -l(to, Xo)f(to, Xo)] +e2 

••• and for (3.4) we obtain v(to) = Yo - h(to, Xo, e). 
If we have the boundary condition 

X(O) + y(O) =0, X(O) + X(l)+ y(1)=O 

for (3.2) then for (3.3) we obtain the boundary condition 

u(O) + u(1) + ho(1, u(l)) + e{ h1 (1, u(l)) - A - 1(0, u(O))[u(O) + ho(O, u(O))]} + e2 .•. 

=0. 
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For (3.4) we obtain the initial condition v(O) = vg + ev~ + S2 ... , where 

vg= -u(O)-ho(O, u(O)) 

vb = - A -1(0, u(O))vg - 8"ho (0, u(O))A -1(0, u(O))vg - h1 (0, u(O)). 
ox 

Linear state -regulator problem 

Let us consider the problem of minimization of the functional 
1 

1 1 f lE = 2: X'(l )Fx(1) + 2: [x'(t)Q(t)X(t) + u'(t)R(t)u(t)J dt 

° 

(4.1 ) 

under the restrictions 

y = A1 (t)y + A2 (t)z + B1 (t)u, 

si = A3(t)y + A4(t)Z + SB2 (t)u, 
where u E Ek 

y(O) = Ye, 

z(O)=Zo, 
(4.2) 

x= G)' Q=Q'= (~~ ~:) ~O, F(s)=F'(s)= (~1; S~2J ~O, 
R=R'>O. 

It is well known (see [7J), that this problem has a linear feedback solution 
given by 

where K l' K 2' K 3 is the solution of the initial value problem for the system 

K1 = -K1A 1-A'lK 1 -K2 A3 -A~K~ +K1S1K 1 -Q1 +SK1S2K~ + 

+SK2S~K1 +S2 ... = f(t, K 1, K 2, K 3, s) 

sK2 = -K1A2 -K2 A4 -A~K3 -Q2 -SA'l K 2 +sK 1S1K 2 + 

+sK 1S2K 3 +S2 ... =gdt, K 1, K 2, K 3, s) 

sK3 = K3A4 -A~K3 -Q3 -sK~A2 -sA~K2 +S2 . .. =g2(t, K l' K 2, K 3, s) 

K 1(1)=F 1 , K 2(l)=F2, K3(l)=F3 

S 1 = B 1 R - 1 B'l , S 2 = B 1 R - 1 B~, S 3 = B 2 R - 1 B~ . 
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In this case we have the representation (1.6) in the form 

K 3=V2+P2(t,K 1 ,e) 

where U is the solution of the equation 

0= f(t, U, Pdt, U, e), P2(t, U, e), e) 

and VI' V2 satisfy the system 

where 
gi+2 =gi(t, U +eH, VI +P1, V2 + P 2 , e)-gi(t, V+eH, PI' P 2 , e)-

::: (t, U +eH, e) [f(t, U +eH, VI +P1, V2 +P2, e) 

- f(t, U +eH, PI' P2, e)] 

i= 1, 2. 
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(4.3) 

(4.4) 

Matrix-functions H, PI' P 2 can be represented as asymptotic expansions 

Pi=P?(t,K 1)+ept(t,K1}+e2 ... , i= 1, 2, 
eH=eH 1 (t, U, VI' V2)+e2 ... 

where Pg is the solution of the equation -PgA4 -A~Pg -Q3 =0 and p? = 
-(K 1 A2 + A~Pg + Q2)Ai 1; pi is the solution of the equation Pg = -(P?),A 2 
-A~p?-piA4-A~p~ and 

P~={:t p?+[ -K1A1-A'lK1-P?A3-A~P?+K1S1K1-Q1JA2Ai1-

A'l p? -A~Pi + K 1SlP? + K 1S2Pg} Ail. 

For HI we obtain an expression 

HI = V1Ai1 A3+(Ai 1 A 3)'V1 +(Ai 1 A 3)'V2A4 1A 3· 

Finally, for (4.3) we have the initial condition 

U(l)=F 1 -eH 1 (1, F 1, F2 -P?(l, F 1), F3 -Pg(l, F 1)) 

and for (4.4) we have the initial condition 

VI (1) = F 2 - PI (1, F 1 , e), V2(l)=F 3 - P2(1, F l' e). 
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Systems with two small parameters 

Consider the system 

(5.1) 

where Xi and J; vary in Eni' i = 0, 1, 2, e and j.1. are small positive parameters. Let 
us suppose that (5.1) satisfies the following hypotheses. 

(i) The equation 12 (t, Xo, Xl' X2' 0, 0) = ° has the isolated solution X2 
= h20 (t, Xo, Xl) for t ER, Xo E En0, Xl E Pi and the function h20 and its first and 
second partial derivatives with respect to all variables are uniformly 
continuous and bounded for t E R, Xi E pi, i = 0, 1. 

(ii) Functions J;, i = 0, 1, 2 and their first and second partial derivatives 
with respect to all variables are uniformly continuous and bounded for t E R, 
Xi E pi, i=O, 1, IX2 -h20 (t, Xo, x1)1 s;,p, ° s;,e s;,eo, ° s;,j.1.s;,j.1.o, 

(iii) The eigenvalues Ai=}'i(t, Xo, Xl)' i= 1, . , " n2 of the matrix 

~I2(t,xo'X1,h20(t'XO'X1)'0,0) satisfy the inequality ReAis;,-2f3<0, tER, 
°X2 
XiEEni, i=O, 1. 

These hypotheses are analogous to (iHiii) and as in Section 1 there exist 
functions h2=h2(t,Xo,X1,e,j.1.), H i=Hi(t,Yo'Y1,Y2,e,j.1.), i=1, 2 such that 

Xo= Yo +ej.1.Ho(t, Yo, Y1' Y2, e, j.1.) 

The function h2 defines the integral manifold X2 = h2 (t, Xo, Xl' e, j.1.) of(5.1), 
If j;, i = 0, 1,2 are sufficiently smooth with respect to all variables then h2 can be 
found as asymptotic expansion h2 = h20(t, Xo, Xl' e) + j.1.h21 (t, XO, Xl' e) + j.1.2 .. , 
from the equation 

8h2 8h2 8h 2 ell-,,- +ej.1.-" -jo+j.1.-,,- 11 = 12 
ot 0Xo 0X1 

J;= J;(t, XO, Xl' h2, e, j.1.), i=O, 1,2. 

The functions Ho, HI define the integral manifold wo=ej.1.Ho(t, Yo, YI' 
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Y2,e,J1), W I =J1H I(t, Yo, Y2' e, J1) of the system 

Yo = F o(t, Yo, YI' e, J1) 

eYI = F I(t,Yo,)I!,e,J1) 

where 

~Vo = f3(t, Yo, YI, Wo' W I , 2 2 , e, J1) 

e~vI =f4(t,YO'YI' Wo' wl ,2z,e,J1) 

eJ1i z Zz(t,YO'YI' Wo, wI,zz,e,J1) 

Fi= h(t, Yo, YI, h2(t, Yo, YI, e, f-l), e, J1) 

h + 3 = h (t, .vo + Wo ,)11 + W I , Z Z + h z (t, Yo + Wo' Y I + W I , e, f-l»-

i =0, 1. 

3hz ch z Z2 = .1f2 - ef-l-" - .1fo - J1-" - .1fl 
0Xo OI.l 

.1 h = h ( t, Y 0 + Wo' Y I + W I ' Z 2 + h z, e, J1) - h (t, Y 0 + Wo' Y I + W I , h z, e, Il) 

i=O, 1,2 
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and can be found as asymptotic expansions Hi=HiO(t,Yo'YI,}'z,e) 
+pH i1 (t,Yo'YI'Y2,e)+ll z ... from the equations 

where 

oH· cH· cH· oH· 
eJ1-,,-' +eJ1~Fo+J1~FI + ~Zz= h+3 

ot oyo 0YI oYz 

Hi =Hi(t, Yo, YI' Yz, e, J1), Fi= Fi(t, Yo, YI' e, J1) 

Z 2 = Z2 (t, Yo, YI' ef-lH 0, J1H I, Y2, e, p) 

h+3=h+3(t,Yo'YI,ef-lHo,f-lHI,Yz,e,p), i=O,1. 

The variables Yo, YI, Yz satisfy the equations 

Yo=Fi)(t,Yo'YI,e,J1) (5.2) 

eYI =F 1(t,Yo'YI,e,J1) (5.3) 

where eJ1Yz = G2(t, Yo, YI' Y2, e, J1) (5.4) 

G2=Zz(t,Yo'YI,eJ1Ho, J1H I,Yz,e,J1), Hi=H2 (t,Yo'YI,Yz,e,J1). 

If we have the initial condition Xi(tO)=X?, i=O, 1,2 for (5.1) then for 
(5.2H5.4) we obtain the initial condition Yi(tO) = Y? where yg = xg 
-il 2 (to,xg,x?,e,J1) and yg, Y? can be found from the equations 

(5.5) 
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As earlier, the stability problem for (5.1) is equivalent to the stability 
problem for (5.2), (5.3) and for sufficiently small IY~I we obtain 

p 
IY2(t)I::;;K2IY~le-t!t(I-I01, t~to. 

Now let us suppose that the system (5.2), (5.3) satisfies the following 
hypotheses. 

(i)The equation F1(t'YO'Yl'0,0)=0 has the isolated solution Yl 
= hI o(t, Yo) for t E R, Yo E po. The function hlO and its first and second partial 
derivatives with respect to all variables are uniformly continuous and bounded 
for t E R, Yo E Eno. 

(ii) The functionsF i , i = 0, 1 and their first and second partial derivatives 
with respect to all variables are uniformly continuous and bounded for t E R, 
Yo E En0, I Y 1 - h 1O(t, Yo) I::;; PI' 0::;; e::;; e1 ::;; eo, 0::;; /1::;; /11::;; /10' 

(iii) The eigenvalues )'i=)'i(t, Yo), i= 1, ... , n1 of the matrix 

~F 1 (t, Yo, hlO(t, Yo), 0, 0) satisfy the inequality Rdi ::;; -20:<0, t E R, Yo E Eno. 
°Yl 

Under such assumptions which are analogous to (iHiii), the systems (5.2), 
(5.3) can be decomposed by the transformation 

Yo=u+eH(t, u, v, e, /1), Yl =v+h(t, Yo, e, /1). 

The functions hand H can be found as asymptotic expansions h 
=ho(t, Yo, /1)+eh 1 (t, Yo, Il)+e 2 

• •. , H =Ho(t, u, v, /1)+ eH dt, u, v, /1)+e2 
• •• 

from equations which are analogous to (1.2) and (1.8). 
Finally, we obtain the system 

where 

u = F(t, u, e, /1) 

ev = G(t, u, v, e, /1) 

F = F o(t, u, h(t, u, e, /1), e, /1) 

G= F 1 (t, u + eH, v+ h(t, u +eH, e, /1), e, /1)­

- F 1 (t, u +eH, h(t, u + eH, e, /1), e, /1)-

ah 
-e -" -(t, u+eH, e, /1) [F o(t, u+eH, v+h(t, u+eH, e, /1), e, /1)­

oyo 

- F o(t, u + eH, h(t, u + eH, e, /1), e, /1)] 

G1 = G2 (t, u+eH, v+h(t, u+eH, e, /1), Y2, e, /1), 

H = H(t, u, v, e, /1). 
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It is easy to obtain the initial conditions for this system. Moreover, the 
stability problem for (5.1) is equivalent to the stability problem for the reduced 
system 

u = F(t, U, e, J1.). 

Linear systems 

Consider the following linear singularly perturbed system 

X=A ll X+A 12 y+ f1' ey=A 21 X+A 22 y+ f2 (6.1) 

where X and f1 = f1 (t, e) vary in Em, Y and f2 = f2 (t, e) vary in En, Aij = Aij(t, e) 
(i,j= 1, 2) are matrix-functions, t E R, e is the small positive parameter. 

Let us suppose that j; and Aij (i,j= 1, 2) are bounded and smooth 
functions of t and e and the eigenvalues }.i = }'i(t) of A 22 (t, 0) satisfy the 
inequality Re}'i::; - 2f3 < o. 

Under such assumptions there exists a transformation 

x = U + eH(t, e) v, y = v+ pet, e)X+ pet, e) (6.2) 

which is the analogue of (1.6) for the linear case. The new variables U and v 
satisfy the equations 

u=(A ll +A 12 P)u+ f1 +A 12 P 

eV =(A22 -ePA 12)V. 

(6.3) 

(6.4) 

The matrices P, H and the vector-function P can be found as asymptotic 
expansions P = poet) +eP 1 (t) + e2 

... , H = H o(t) + eH dt)+ e2 
... , P = Po(t) 

+ eP 1 (t) + e2 
... from the following equations 

(6.5) 

(6.6) 

(6.7) 

It is a straightforward exercise to obtain an expression for Pi' Hi' Pi from 
these equations. 

As for nonlinear systems, the stability of(6.3) is equivalent to the stability 
of (6.1), and the transformation (6.2) permits us to decouple initial and 
boundary value problems. 

7 Periodica Polytechnica M. 31/1. 
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Now let us apply the transformation (6.2) to study the Ito equations [10]. 
Consider the system 

dX= [All X+ A 12 y+ Jl (t, w)] dt+ G1 (t, w) dw 
(6.8) 

edy= [A2!X+ A22 y+ J2(t, w)] dt+ G2(t, w) dw 

where wet, w)=(w 1(t,w), ... , W n + m + 1(t, w)) with W i Wiener processes such 

E[wj(t,w)-wj(S, w)] =0, forall t,SE[O, (0), WEQ 

E{[w/t, w)-wj(s, w)] [wi(t, w)-w;(s, w)]} =bj;(t-s). 

If Fs is the a-algebra generated by {w(t)-w(.), .::.;t::.;s} we assume.fj(t;) 
and Gj(t;) are measurable with respect to Fs; we assume also.fj and Gj are 
measurable on the product space (0, (0) x Q. Moreover 

E[fT(t, W)Jl (t, w)] + ELI!(t, W)J2 (t, w)] ::.; et < 00 

Tr E[Gi(t, w)G 1 (t, w)] + Tr E[Gi'{t, w)G2(t, w)] ::';et 1 < 00 

for all t E [0, (0). 
Under these assumptions by the transformation (6.2) with P = 0 we obtain 

the reduced system 

du = [A(t, e)U + PI (t, e, w)] dt + F 1 (t, c, w) dw 

e dv = [B(t, e)V + P2 (t, c, w)] dt + F 2 (t, e, W) dw 

A=A ll +A I2 P, B=A 22 -ePA I2 , Pl=(l+eHP)JI- H J2' P2=J2 
-ePJl 

Linear systems with two small parameters 

Consider the linear analogue of (5.1): 

X=AooXo+AoIXl +A02 X2 

eXl =A lO Xo+A ll Xl +A 12 X2 

efLX2=A 20 Xo+A 21 Xl +A22 X2 

where t E R, Xi E pi, Aij= Aij(t, c, /1) are smooth and bounded matrix-functions, 
e and fL are small positive parameters. 

Let us suppose that the eigenvalues )'i = )'i(t) (i = 1, ... , n2 ) of the matrix 
A22 (t, 0, 0) satisfy the inequality Rdi ::.; - 2{3 < O. 
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Our first step is to use the transformation 

Xo=Yo+epHo(t,e,p)Y2' Xl =YI +pHI(t,e,p) 

X2 = Y2 + poet, e, p)Xo + PI (t, e, p)Xt 

to obtain the system 

where 

y=BooYo+BoIYI 

eYI =BIOYo+BllYI 

ePY2 =B22 Y2 

Bij=Aij+Ai2 Pj U,i=0,1), B22=A22-epPoA02-pPIAI2. 
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The matrix-functions Po and P I can be found as asymptotic expansions 
p o=P8(t,e)+pPb(t,e)+p2 ... , PI=P?(t,e)+pP~(t,e)+p2 ... from the 
equations 

epFo +epPo(Aoo + A02 PO)+ pP I (A Io + A I2 PO) = A20 + A22 PO 

epFI +epPo(AOI +A02 Pd+pPdA ll +A 12 PI)=A 21 +A 22 P I 

and the matrix-functions Ho and H I can be found as asymptotic expansions Ho 
= H8(t, e) + pHb{t, e) + p2 ... , HI = H?(t, e) + pHUt, e) + p2 ... 
from the equations 

epHo+HoB22=epBooHo+pBoIHI +A02 

epHI +HIB22=epBIOHo+pBltHI +A 12 · 

Now let us assume that the eigenvalues )'i=)'i(t) (i= 1, ... , n l ) of the 
matrix BII(t,0,0)=All(t,0,0)-At2(t,0,0)A2i(t,0,0)A21(t,0,0) satisfy the 
inequality Re).i ~ - 20: < 0, t E R. 

Our second step is to reduce system (7.1) to the form 

u=(Boo + BOI P)u 

eV (B II -ePBodV 

ePY2 =B22 Y2 
by the transformation 

Yo = u + eH(t, e, p)v, 

The matrix-functions Hand P can be found as asymptotic expansions P 
=P°(t,p)+eP I(t,p)+e 2 ... , H=Ho(t,p)+eH I(t,p)+e2... from the 
equations 

eF+ eP(Boo + Bot P)=B IO + BII P 

eH +H(BII -ePBOI)=e(Boo+BoIP)H +BOI 

which are analogous to (6.5), (6.6). 

7· 
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Nonlinear singularly perturbed regulator problem 

In many optimal control problems the eigenvalues Ai of the matrix ~g (see 
ay 

the hypothesis (ii), Section 1) satisfy the inequalities 

ReJ. i :::; - 2f3 < 0, i = 1, ... , k; Re )'i ~ 2f3 > 0, i = k + 1, ... , n. (8.1) 

Let us suppose, for simplicity, that system (1) can be represented as 

x= !(t, X, Yl' Y2, 8) 

8Yl = A(t, X)Yl + gl (t, X, Yl' Y2' 8) 

8Y2 =B(t, X)Y2 +g2(t, X, Yl' Y2, 8) 

(8.2) 

where Y 1 E Ek, Y 2 E En - k, the eigenvalues of A satisfy (8.1) for i = 1, ... , k and the 
eigenvalues of B satisfy (8.1) for i=k+ 1, ., ., n. Then (8.2) like the system (5.1) 
can be reduced to the form 

u = F(t, U, 8) 

8V 1 = A(t, U)Vl + G1 (t, U, VI' 8) 

8V2 = B(t, U)V2 + G2 (t, U, VI' V2, 8). 

Example 8.1. Let we have the problem of minimization of the functional 

under the restrictions 

x=Y, 8Y=!(X)+U, X(O)=Xo, y(O)=Yo· 

The boundary value problem by the maximum principle can be represented in 
the form (see [6J) 

X=Y, P=-X-qf'(X), 8Y=!(X)-q, 8q=-p-y (f'=~~) 
X(O)=Xo, y(O)=Yo,x(1)=p(1), y(1)=8q(1) 

and U= -q. 
This boundary value problem can be reduced to the boundary value 

problem 

Ut = -U2(1-8f')+82 
. .. , U2 = -(Ul + f'!)(1-8f')+8 2

• •• (j = !(u l )) 

Ul (0)-W2(0)= XO +8Yo +8
2 
.. ". U1 (1)=U2(1) [1 +8(j'(U 1(l))+ 1)] +8

2 
... 
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and two initial value problems 

c:v 1 = - [1 + c:f'(u 1) + c: 2 
... JVl' 

c:v 2 =[1 + c:f'(u 1) +c:2 
... JV2' 

by the final transformation 

VI (0) = [1 + ef'(Xo)Jyo + u2 (0) + c: 2 
••. 

v2 (1)= -u2 (1)(1-e)-e!(u 1(1))+e 2 
... 

X=u+c:(v 1 +v2)+e2 
... , P=U 2 +c:f'(U 1)(V 1 -V2)+c:2 

... 

10] 

Y = VI - V2 - p(1- c:f'(X)) + c: 2 
••. , q = VI + V2 + !(X) - c:(X + f'(X)!(X)) + c: 2 

.•.. 

It should be observed that the existence theorem of the integral manifold 
y = h(t, X, e) for (1) was obtained in [llJ, analogous result for linear systems was 
obtained in [12]. The method of approximating integral manifolds for linear 
and nonlinear systems and for systems with several small parameters was 
essentially used in [3, 4, 13, 14]. Different aspects of the decomposition of 
singularly perturbed systems were studied in [15]. 
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