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Abstract

A method of integral manifolds is applied to study singularly perturbed differential
systems. The use of this method permits us to solve a problem of decomposition of singularly
perturbed systems. The applications of the method are illustrated on examples.

Introduction

The purpose of this paper is to study the problem of singularly perturbed
systems decomposition by the method of integral manifolds [1, 2].

Throughout this paper E" denotes the real n-dimensional Euclidean
space and |- | the Euclidean norm on this space.

The following system of differential equations is analyzed:

= e,  ey=gltx ¥ 8 (1)

where y and f vary in E™ y and g vary in E", t € R, ¢ is the small positive
parameter. Such systems appear in some problems of mechanics {3, 4] and
control [5-8].

The object of our investigation is to obtain a transformation allowing to
reduce (1) to system of form

u=F(t,u,s) (2)
ev=G(t, u, v,¢) (3)

and to discuss some applications in stability, boundary value and control
problems.

* This research was completed while the author was visiting the Department of
Mathematics at the Budapest University of Technology
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Integral manifolds

First we recall the definition of an integral manifold for the equation y
=X(t, y), where y € E". A set S< R x E" is said to be an integral manifold if for
(to, x0) € S, the solution (¢, x(t)), x(to)=yxoisin Sforte R. If (¢, x(t)) e Sonly at a
finite interval, then we say that S is a local integral manifold.

Let us suppose that (1) satisfies the following hypotheses.

(i) Equation g(t, , y, 0)=0 has the isolated solution y=h,(t, y) fort € R,
¥ € E™. The function h, and its first and second partial derivatives with respect
to all variables are uniformly continuous and bounded for t e R, y € E™.

(ii) Functions f, g and their first and second partial derivatives with
respect to all variables are uniformly continuous and bounded fort € R, y € E™,
[y—ho(t, )1<p, 0<e<e.

(iii) The eigenvalues A, = A,(t, x),i=1, .. .,nof the matnx (t %, g, 0) satisfy

the inequality Re4; < —2f<0,teR, y e E".
Under such assumptions the system (1) has the integral manifold y
= h(t, ¥, €). The flow on this manifold is governed by the m-dimensional system

}Z:f([’ L h(ts s 8): 5)' (11)

Function 4 is continuously differentiable and h(t, 3, 0)=h, [1, 2].

If f and g are sufficiently smooth with respect to all variables, then A may
be represented as asymptotic expansion h=hq(t, x)+¢h,(t,y)+¢e*.... The
coefficients of this expansion can be found from the equation

oh .
e +a f(t X h, e)=g(t, 1, h, ) (1.2)

by algebraic operations [3, 4].
Let us introduce new variables u, z, w, where u satisfies (1.1), z=y
—ht, x, &), w=y—u and consider the auxiliary differential system

u= f(t,u, hit,u, ), &)
w=fi(t,u,w,z¢) (1.3)

e2=2(t,u,w,z¢)
where
fi=flt,ut+w,z+h(t,u+w,e),e)— f(t, u,h(t,u,e), &)

=g(t,u+w,z+h(t,u+w,e),e)—g(t,u+w, h(t, u+w,¢), &) —

oh
—Sg;(t,u'kw,ﬁ)[f(t,u*—mZ+h(t,u+w,£), e)— f(t,u+w,hit,u+w,e), e].
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This last system has the integral manifold w=¢H(t, u, z, &), where function
H satisfies the inequalities
|H(t,u, z,e)| <alz| (1.4)
VH(t,u, z, 8)— H(t, 4, z, &) | < b|z| * |u—il]
{H(t,u,z,8)— Hl{t,u, 2, 8)| < c|z—Z|

(1.5)

with the positive constants a, b, cfor te R,ue E™, [z|<p,<p, 0<e<e, <gg.

The proof of this statement is similar to the proof of the existence of
“stable manifold” in [9]. The flow on this manifold is governed by the (m+ n)-
dimensional system (2), (3) where

F(t,u, &)= f(t, u, h(t,u, ¢), €), G(t, u, v, &)= Z(t, u, eH(t, u, v, &), v, €)
Note that G(t, u,0,)=0.

Let y=x(t), y = y(t) be the solution of (1) and |y, — h(t,, xq, &) < py, Wwhere
%o=1(to), Yo=J(to). Then
y=u+eH(t,u,v,¢ (1.6)
y=v+h(t, z,e)=v+h(t, u+eH(t, u,v,ée),¢)

where u =u(t), v=1o(t) is the solution of (2),(3), v, =0v (to)= yo--h(to, Yo, &) and u,
=u(t,) can be found as asymptotic expansion uy=ug+eup+ ... from the
equation

X0=u0+8H(t0’ Up, 0058)' (17)

It is easy to see that ud=1y,, ud=—H(tg; Xo» Yo —Hholtos xo) 0)-
The next result, however, shows that, in principle, function H can be
approximated to any degree of accuracy with respect to e.

oH 0H
Let D(eH)-e-— +6 F(t u, &)+ QII—Z(I u,eH,v,e)— fi(t,u,eH, v, ).
If D(eH)=0(e**1), where « is a positive integer, then |H — H|= O(g").

In many cases H can be found as asymptotic expansion ¢H =¢gH(t, u, v)
+¢%. .. from the equation D(eH)=0 or

0H o0H J0H
8—5{ + E‘—F(t,u,e)—k —a-v—Z(t, u,eH,v,e)= f,(t,u,eH, v, &) (1.8)

Note that if the hypotheses (i}(iii) hold only at a bounded domain with
respect to t and g, then y=h(t, z,¢) and w=¢eH(t,u,z,¢) are local integral
manifolds.
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The stability problem

Let u=u(t), v=1(t) be any solution of (2), (3) such that ulty)=uq, vty) =0y,
lvol <p,. Hypothesis (ii) implies

. B
lo(t)| <Ke 0710 ¢>¢ (2.1)

where K is a positive constant, 0<e<g,.

It is well known that for any solution y = y(t), y = y(t), x(to)= 0. Vto)=Vo
of (1) with sufficiently small |y, — h(tq, 0, €)| there is a solution u=u(t), u(t,)
=u, of (2) such that

p=ut)+@, (1), Y(O)=h(t, ut), &)+ ¢,(1) (2.2)

B
where @;(t)=0(e” " ") as t —t,— o0 [2].
Now we have the exact expressions for ¢, and ¢,

@y =eH(t, u(t), v(t), &)

(5 =h(t, u(t)+6H(ta u([)a U(t)v 8)5 8)'_h(t9 u(t)e 8) + U(Z)
and the equation (1.7) for u,.

The representation (2.2) tells us that (2) contains all the necessary
information needed to determine the asymptotic behaviour of the solutions of
(1).

Let u(t) be a solution of (2). Then y =u(r), y = h(t, u(t), ) is a solution of (1).
If u(r) as a solution of (2) is stable (asymptotically stable, unstable), then (u(t),
h(t, u(t), €)) as a solution of (1) is stable (asymptotically stable, unstable) [2].

Initial and boundary value problems

If we have the initial condition y(t,)= x4, y(to) = ¥, for (1) then for (2), (3)
we obtain the following initial condition u(ty)=u,, v(ty)=1v,, Where vy=y,
—h(te, 70, €) and u, is the solution of the equation

uo=yo—¢&H(to, g, Vo, &). 3.1

If we have a boundary value problem for (1), then for (2), (3) we obtain
coupled boundary conditions, which can be decoupled in some cases, when
1

such values as e” ¢ can be neglected.
1
Everywhere below we let O(e™ ¢)=0 in boundary conditions.
Example 3.1. Consider the system

x=y (32)
ey =A(t, x)y+ f(t, 1)
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where y, y € E", matrix-function 4 and vector-function f are smooth and
bounded, eigenvalues of 4 have negative real parts. This system has the integral
oh  0Oh

manifold y=h(t, z,¢). From the equation 8%—[- +s—a—_/— h=Ah+ f, which is
analogous to (1.2), we obtain h=hy(t, y)+eh, (t, ) +¢€2. .. where he=—A"1f,

hy=A4"1 (%1170 + Oahy‘) h0> . In this case (2) is u=h(t, u, ¢) and the system (1.3) is

tu="h(t,u,e

w=h{t,u+w,e)—h{t,u,e)+z

oh .
£7 = {A(t, u+W)‘“E%;;([, u-+w, 8):[ Z.

This last system has the integral manifold w=¢H(t, u, z, ¢) and H can be
found from the equation

2 A h
Cfl +eaH h(t,u, &)+ ng [A(t,u+£H)~s~7(t, u+eH, a)]z=

-~

. 0
ot du 0y

=z+h(t,u+eH, e)—h(t, u,e)

as asymptotic expansion eH =A™ '(t, u)z+¢%. . ..
Thus we have the representation

y=u+eA" Y, up+e2. .., y=v+ho(t, x)+eh(t,7)+e*. .,

and the equations ‘
u=hy(t,u)+ceh,(t,u)+e>. .. (3.3)
aﬁz[A(t, u+ed (e, up)—e 06};0 (t,u)+¢&2. . :l v (3.4)

If we have the initial condition y(to) =0, ¥(to)=y, for (3.2) then for (3.3)
we obtain the initial condition u(te)=jxo—A g, o) [Vo
— A7 to, 20)f(to, xo)]+&%. .. and for (3.4) we obtain v(to)=y,—h(to, %o, £).

If we have the boundary condition

w0)+y0)=0, »0)+x(1)+y(1)=0
for (3.2) then for (3.3) we obtain the boundary condition

u(0) +u(1)+ ho(1, u(1)) +e{h, (1, u(1)) — A 10, u(0)) [1(0) + ho (0, u(0))]} +&2. . .
=0.
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For (3.4) we obtain the initial condition v(0)=10v$ +ev)+¢*. .., where

vg= —u(0)— ho(0, u(0))

vg=—A""(0,u(0))vg — %%9 (0, u(0) A~ (0, u(0))vg — by (0, u(0)).

Linear state regulator problem

Let us consider the problem of minimization of the functional
1

I,= %x’(l)Fx(lH -;— J [ ()Q(0)x(r) + W (R(t)u(t)] de

under the restrictions

y=A,t)y+ A,(t)z+ B (t)u, y(0)=yq, yeE™
e2=A;(t)y+ A(t)z+eB,(tu, 2(0)=z,, ze E
where u e E¥
y , 04 Q2>> y (FI 5F2>
= , == = , _0, F & =F Ej= ,
* <Z> ¢=0 <Q2Q3 2 ) eF; eF,
R=R'>0.

@.1)

(4.2)

>0

= Vs

It is well known (see [ 7]), that this problem has a linear feedback solution

given by

B 7
u:—.R_l 1 K]; 8K2 X
B,/ \eK’ €K,

where K, K,, K3 is the solution of the initial value problem for the system

K;=—-K;A,—AK—K,A;— A5K,+ K, S, K, —Q, +eK, S, K5+

+6K25I2K1+82. . -——"f(t, Kl’ Kz,K3, 5)
eK,=—K,A,—K,A,— A3K;—0Q,—e4, K, +eK, S, K, +
+8K182K3+82. . =gl(t’ Kl) K29K3’ 8)

6K3= —'K3A4“‘ ;Ks‘—Q:.,""SK’zAZ—EAlsz'*‘SZ. .. =g2(t, Kl’ K2,K3,8)

Ki)=F,, Ky1)=F,, K3)=F,
Sl-':BlR—lB’, S2=BlR—lB’2, S3=BzR——lB,2.
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In this case we have the representation (1.6) in the form
K1=U+8H(t,U, Vl’ Vz, 8), K2=V1+P1(Z,K1, 8),
K3= V2+P2(t, KI’E)

where U is the solution of the equation

U=f(t, U, P(t,U,¢), P,(t, U,e), ¢ 4.3)
and V,, V, satisfy the system
eVi=g5(t, U, V,, Vs, ¢), eVo=g,(t, U, Vi, V,, ¢ 4.4)

where
gi+2=gi(ta U+8H9 V1+P17 V2+P298)_gi(ts I/+8Ha Pla P298)—'
’\PA
— gk—t(t, UteH,e)[f(t, U+eH, V,+P,, V,+P,,¢)
1
“'f(t, U+3H, PI’ Pz, 8)]

H=H(t,U,V,,V,,¢), P;=P(t,V+¢H,¢), i=1,2.
Matrix-functions H, P, P, can be represented as asymptotic expansions
P,=P?(t,K,)+eP!(t, K,)+&* ..., i=1,2,

eH=ceH, (t,U,V,,Vo)+¢* ...

where P3 is the solution of the equation —P34,— A, P5—Q3=0 and P{=
—(K A, +A5P3+ Q)47 ; P) is the solution of the equation P9= —(P9)4,
—A,PY—~PiA,— A, P} and

0 , -
Pi={—a—t-P?+[~K1A1~A'1K1—P?Aa—A3P?+K151K1~Q1]A2A4 -

A4, P?-A’3P§+KISIP?+K1S2P‘2’} A;l

For H, we obtain an expression
H =V, A7 A3+ (A7 " AV (A7 P AV, AT A,
Finally, for (4.3) we have the initial condition
Ul)=F,—¢H,(1,F,,F,—P%(1,F,), F3—P3(1,F),)
and for (4.4) we have the initial condition

Vill)=F,—P,(1,F,¢), Vo(1)=F3—P,(1,F,, ¢).
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Systems with two small parameters

Consider the system

20=f0(t’ LosX1s X258 .u)
el1=S1(t Xos 11> X2 & 1) (5.1)
8#i2=fz(fa XO) A1 X228 .u)

where z;and f vary in E"" i=0, 1, 2, ¢ and p are small positive parameters. Let
us suppose that (5.1) satisfies the following hypotheses.

(i) The equation f,(t, %0, %15 %2,0,0)=0 has the isolated solution y,
=h,0(t, 19, 71) for t € R, xo € E™, y; € E™ and the function h,, and its first and
second partial derivatives with respect to all variables are uniformly
continuous and bounded for te R, y;€ E™, i=0, 1.

(i) Functions f;, i=0, 1, 2 and their first and second partial derivatives
with respect to all variables are uniformly continuous and bounded for t € R,

€E™, i1=0, 1, |xa—hyolt, %o, x)I<p, 0<8<80, OSﬂSIv‘o-
(m) The eigenvalues 4;=24,(t, 20. £1), i=1, ..., n, of the matrix
,J:‘ (t, Zos 215> Bao(ts Zos x1), 0, 0) satisfy the inequality Red; < —28<0, teR,
7€ EM i=0, 1.
These hypotheses are analogous to (i}—(iii) and as in Section 1 there exist
functions h, =h,(t, %o, 11, & 1), Hi=H;(t, yo, V1, ¥2, & 1), i=1, 2 such that

X0=y0+8.uH0(t’ Yos V1> V2,86 H)
L=y +urH (Yo, V1 Y2, 6 1)

X2=Y2+ha(ts %os 15 & W)

The function h, defines the integral manifold y, =h,(t, 1o, %1, & 1) of (5.1).
If f;,i=0,1, 2 are sufficiently smooth with respect to all variables then h, can be
found as asymptotic expansion h, =h,o(t, 20, X1, &)+ 1ha 1 (& Yo %1, 8)+ 12 .
from the equation

o

oh,

fo“}‘ﬂ B f1 ip)

fi=fi(t’X0’Xl9h2’89#)a l=0,1,2.
The functions H,, H, define the integral manifold wo=euH(t, yo, 1,
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V2,8, 1), Wy =pH (¢, yo, y2, €& p) of the system

Yo=Folt, Yo, 1, & 1)
eyy=F({t.yo.y1,6 1)
Wo = f3(t, Yo, Y1, Wo, W15 22, & 1)

ewy = fult, Yo, V1, Wos W1» 22, &, 11)

euzs =2, (t, o, Y1. Wo» Wi, 23, & 1)

Fi= fi(t: yo, 1, halt, Yo, V1, & 1), & 1)

Jiv3=Jilt, yo+wo, i+ wi, 2o Hh,y(L Yo+ wo, yy +wy, 6 )~
—Jit, Yo, ¥1, halt, Yo, ¥1s & 1)), i=0,1.

where

ch ch
Z2=Af2~81u ﬂ_zAfO‘-# *\AZAfl
Yo 0%y

Adfi= filt, yo+wo, Y1+ Wy, 23+ Ry, 6 )~ filt, Yo+ Wo, Yy + Wy, has &, 1)
hy=h,(t, yo+ W, ¥1 + Wi, & 1), i=0,1,2

and can be found as asymptotic expansions H;=Hl(t, Vo, Vs V2.6)
+uH (8, Vo» V1» V2. 8)+ 1. .. from the equations

OH,; CH,; CH; CH;
€ ~tepu—Fo+u—F +=—2Z,= 1,
M +u0y0 0 'uay, 1, 2 Jiss

where
HizHi(t’ yO’ ylﬂy2’89 lu)9 FizFi(t’y09 }"1a3,IJ)

Z,=2Z,(t, yo» y1» €iH o, pH 1, y5, 8, 1)
f,-+3=ﬁ-+3(t,y0,y1,8/1H0,/1H1,y2,8,y), i=051-
The variables y,, y,, y, satisfy the equations

.}}0=F0(t’y0’y158aﬂ) (52)
8}}1=F1(t!y03y1583/l) (53)
where eny2 =Gyt Yo V1, V2.6 1) (5.4)

Gzzzz(t’yo’yl’gﬂHO’ #Hl3y238’)u)’ Hi:HZ(IQy()sylsyZag’#)-

If we have the initial condition y;(t)=yx?, i=0, 1, 2 for (5.1) then for
(5.2)—5.4) we obtain the initial condition y;(to)=)° where yI=y5
—hy(to, 29, %3, & 1) and y3, y9 can be found from the equations

X8=y8+8#HO(t9y8ay(l)ay(2)’8: [l) (55)
A=y +uH (5,3, 3. & 1)
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As earlier, the stability problem for (5.1) is equivalent to the stability
problem for (5.2), (5.3) and for sufficiently small |y] we obtain

PO KsSle w0, 115,
Now let us suppose that the system (5.2), (5.3) satisfies the following
hypotheses.

(i) The equation F,(t,y,,y;,0,0)=0 has the isolated solution y,
=hyo(t, yo) for t € R, y, € E™. The function h,, and its first and second partial
derivatives with respect to all variables are uniformly continuous and bounded
for teR, y,e E™.

(i1) The functions F;, i=0, 1 and their first and second partial derivatives
with respect to all variables are uniformly continuous and bounded for t € R,
Yo€E™, |y —hyolt, yo)|<py, 0<e<e; <gp, 0 p<pty <o
(i) The eigenvalues A;=4,(t,yo), i=1,...,n, of the matrix
—00;51 (t, o, hyolt, ¥o), 0, 0) satisfy the inequality Red; < —2a <0, te R, y, € E™.
1
Under such assumptions which are analogous to (i}(iii), the systems (5.2),
(5.3) can be decomposed by the transformation

y0=u+8H(t’ u, v, 8,/1), y1=U+h(t’yO!83 Il)

The functions h and H can be found as asymptotic expansions h
=hgo(t, yo, ) +ehy(t, yo, W+e*..., H=Hy(t,u,v, u)+eH (L, u,v, p)+e>. ..
from equations which are analogous to (1.2) and (1.8).

Finally, we obtain the system

u=F(t, u, e p)
ev0=G(t,u,v, &, U1
8#.92:61(1.9 u, v, y27 &, .u-)

where
F=F,(t, u, h(t,u, ¢ u), & 1

G=F (t,u+eH,v+h(t,u+eH, ¢ p), & p)—
—F,(t,u+¢eH,h(t,u+eH, ¢ p), & p)—

—€ oh (t,u+eH, e, u)[Folt,u+eH, v+ h(t,u+eH, ¢, p), &, p)—
0

~

—Fo(t,u+eH, h(t,u+eH, ¢, ), & p)]
G,=G,(t,u+eH,v+h(t,u+eH, ¢, p), y,, & ),
H=H(t,u,v,¢, p1).
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It is easy to obtain the initial conditions for this system. Moreover, the
stability problem for (5.1) is equivalent to the stability problem for the reduced
system

u=F{t, u, ¢, p).

Linear systems

Consider the following linear singularly perturbed system
A=Ay r+Any+fi, ey=Ay1+tAny+ 1 (6.1)

where y and f) = f(t,¢) vary in E™, y and f,= f,(¢, ¢) vary in E", 4;;= A;;(t, €)
(i,j=1,2) are matrix-functions, t € R, ¢ is the small positive parameter.

Let us suppose that f; and A;; (i,j=1,2) are bounded and smooth
functions of ¢ and ¢ and the eigenvalues 4;=4,(t) of A,,(t,0) satisfy the
inequality Re; < —2f<0.

Under such assumptions there exists a transformation

{=u-+eH(t, ey, y=v+ P(t, &)y + plt, &) (6.2

which is the analogue of (1.6) for the linear case. The new variables u and v
satisfy the equations

u=(A;;+A Put fi+A41,p (6.3)

ev=(A4,,—ePA,). (6.4)

The matrices P, H and the vector-function p can be found as asymptotic

expansions P=Py(t)+eP,(t)+¢e*..., H=Hy(t)+eH,(t)+&>..., P=Py(t)
+¢eP,(t)+¢€%. .. from the following equations

eP+eP(A, + A, P)=Ay + Ay P (6.5)
8H+H(A22"“8PA12)=8(A11+A12P)H+A12 (6.6)
ep+ePfy=(Az;—ePALP+ fr. (6.7)

It is a straightforward exercise to obtain an expression for P;, H;, p; from
these equations.

As for nonlinear systems, the stability of (6.3) is equivalent to the stability
of (6.1), and the transformation (6.2) permits us to decouple initial and
boundary value problems.

7 Periodica Polytechnica M. 31/I.
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Now let us apply the transformation (6.2) to study the Ito equations [10].
Consider the system

dy=[A; 1+ A,y + f1(t, )] dt + G, (t, w) dw 63)

edy=[A,1 1+ A2y + fo(t, 0)] di + G, (t, w) dw
where w(t, @)= (w,(t, ®), . . ., W1 m+(t, @) With w; Wiener processes such
E[w,(t,w)—w;(s,w)]=0, forall f,5€[0, ), we®
E{[w;(t, ©)—wj(s, 0)] [wilt, 0) — (s, )]} =5 ;(t —s).

If F, is the o-algebra generated by {w(t)—w(t), 1 <t <s} we assume fj(t,’)
and G,(t,) are measurable with respect to F,; we assume also f; and G; are
measurable on the product space (0, oc) x 2. Moreover

E[ff (1, 0) f1(t, o)1+ E[ f3(t, 0) f>(t, 0)] << o0
Tr E[G}(t, w)G,(t, w)]+ Tr E[G3(t, 0)G,(t, w)] <oy < 0

for all t & [0, o).
Under these assumptions by the transformation (6.2) with p =0 we obtain
the reduced system

du=[A(t. eu+p,(t,e, )] dt+ F,(t, &, w)dw
edv=[B(t, e)v+p,(t, &, )] dt + F,(t, &, w) dw

A=A +A,P, B=A,,—-¢PA,,, pi=U+eHP)f,—~Hf,, p,=1,
”‘SPfl

F1=(1+8HP)GI_HGZ9 F?.:GZ_‘EPGI'

Linear systems with two small parameters

Consider the linear analogue of (5.1):
1=Aooxo+Aor X1+ Ao2X2
ef1=Aodo+ A1+ 41212
ety =Azodo+ Az X1+ A2z

wheret e R, x; € E™, A;;= A;j(t, &, ) are smooth and bounded matrix-functions,
¢ and p are small positive parameters.

Let us suppose that the eigenvalues 4;=4,(t) i=1, .. ., n,) of the matrix
A,,(t,0,0) satisfy the inequality Red; < —25<0.
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Our first step is to use the transformation
Xo=Yo+euHo(t, & p)yss  xy =y, +uH,(t & p)

X2=Y2+Polt, e, Wyo+ Py (t, & Wy,

to obtain the system y=ByoVo+ Boi Vi

ey1=BioyotBi11)1 (7.1)

euy,=B3,y,
where
Bij:Aij+Ai2Pj (,i=0,1), Bayy=Ay,—euPoAg, —uP A,

The matrix-functions P, and P, can be found as asymptotic expansions
Po=P3(t,e)+uPi(t,e)+u®..., P, =Pt e)+puPi(t,e)+p*... from the
equations ‘

P+ euPo(Ago+ Aoa Po)+ 1P (Ajo+ A1, Po)= A0+ A2, Py
P, +epPo(Agy+ Aoy Py)+ 1P (A + A, P)=Ay + A5, P,

and the matrix-functions H, and H, can befound as asymptotic expansions H,,
=H3(t, e)+uHL(t, &)+ p2. .., H,=H%t,e)+uH(t,e)+p>. ..
from the equations

euHo+ HoByy=euBooHo+ 11Boy Hy + Ao,
euH, +H By, =¢euB,oHo+puBy Hi+ Ay,

Now let us assume that the eigenvalues 4,=/4,(t) (i=1, ..., n,) of the
matrix B;;(t,0,0)=4,,(t,0,0)—A,,(t,0,0)45,(t,0,0)4,,(t,0,0) satisfy the
inequality Re4; < —2u<0,teR.

Our second step is to reduce system (7.1) to the form

d=(B00+B()1P)u
gb=(B;;—¢ePBy,)v

euy, =By,y,
by the transformation
y0=u+8H([,8,,U)U, }’I=U+P(t98’u)y0'

The matrix-functions H and P can be found as asymptotic expansions P
=POt, y)+eP'(t, ) +e*..., H=Ht, pw)+eH (t,p)+e*... from the
equations

eP+eP(Byo+ By, P)=B;o+B,, P

¢H + H(B,, —¢PBy;)=¢(Boo+ By, P)H + By,
which are analogous to (6.5), (6.6).

7‘
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Nonlinear singularly perturbed regulator problem

In many optimal control problems the eigenvalues 4; of the m'cltrixg—“Z (see
the hypothesis (ii), Section 1) satisfy the inequalities g
Rel;< —2<0, i=1,...,k; Rei;=2p>0, i=k+1,...,n. (8.1)
Let us suppose, for simplicity, that system (1) can be represented as
1=t % Y192, 8)
ey1=A(t, 1)1 +9:1(6 1 V15 Y2, €) 8.2)
ey, =B(t, 1)y2+92(t: % V15 Y2, 8)
where y, € EX, y, € E" ¥ the eigenvalues of A satisfy (8.1)fori=1, ..., kand the
eigenvalues of B satisfy (8.1) fori=k+1, .. ., n. Then (8.2) like the system (5.1)
can be reduced to the form
u=F(t,u,¢
eby=Alt, u)o, +G,(t, u, v, €)
g0, = B(t, u)v, + G, (t, u, vy, 0,5, &).
Example 8.1. Let we have the problem of minimization of the functional
1

1
I.= %(x2(1)+y2(1))+ 5[ (*(0)+ y*(O) + u?(r)) de

o]

under the restrictions

=y, e=f(0+u x0)=yx, ¥O0)=y,.

The boundary value problem by the maximum principle can be represented in
the form (see [6])

: : , . : ,_d
i=y, p=—y1—4f' (0 ey=f(0—q. ef=-p—y (f = —d—{—>
10)=70, ¥O0)=yo, x(D)=p(1), y(1)=¢q(1)
and u=-gq.
This boundary value problem can be reduced to the boundary value
problem

iy= i (1—ef)+e . .., dy=—(, + L N)(1—ef Ve, (f=[(w,)
Uy (0)—euy (0)=yo+eyo+e*. .., u(D=u,(D[1+e(f(u,(1)+ D]+ ..
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and two initial value problems
ey =—[1+ef'(u)+e*. .. Jo,, 0, 0)=[1+ef (xo)]yo +u(0)+&2. ..
eb,=[1+ef(u)+e>...Jv,, vy(D)=—u()(1 —e)—ef(u, (1) +&. ..
by the final transformation
y=u+ev,+oy)+e. .., p=u,+ef'(u)(v,—v,)+e%. ..
y=v—0,—p(l—ef" () +&. .., g=v,+0,+ f)—elx+ () +&*. . ..

It should be observed that the existence theorem of the integral manifold
y=nh(t, x, ¢) for (1) was obtained in [11], analogous result for linear systems was
obtained in [12]. The method of approximating integral manifolds for linear
and nonlinear systems and for systems with several small parameters was
essentially used in [3, 4, 13, 14]. Different aspects of the decomposition of
singularly perturbed systems were studied in [15].
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