DETERMINATION OF OPTIMUM MAINTENANCE INTERVAL IN TERMS OF COST

Ch. Chowdhury
Department of Precision Mechanics and Applied Optics, Technical University, H-1521 Budapest
Received October 20, 1986
Presented by Prof. Dr. O. Petrik

Abstract

If a system can be characterized by an increasing failure rate, then it is advisable to replace it before it has aged too greatly. On the other hand frequent replacement means excessive cost. Therefore, the optimum replacement interval has to be determined which will minimize the maintenance cost. Here a simple method has been worked out to ascertain the optimum value of block replacement interval. An error committed in reference (1), while calculating the value of renewal density has been rectified. A necessary condition for calculating the optimum block interval is derived.

Introduction

In order to determine the preventive maintenance interval the expected cost for exchanging non-failed item $\left(C_{2}\right)$ and the expected cost of failure $\left(C_{1}\right)$ are required. In real life this value (the ratio of the cost of preventive maintenance and failure maintenance) may change in course of time. When this value changes, then the new preventive maintenance interval $\left(T_{0}\right)$ is to be determined. In order to avoid repetition of the optimization and for the simplification of the consideration of the effect of the change of $\frac{C_{2}}{C_{1}}$, it will be useful if we can determine relationship between $\frac{C_{2}}{C_{1}}$ and T_{0}. In section 2 we develop a simple method to determine the block replacement interval and we also reveal a necessary conditions that is required for ascertaining the optimum block interval. In section 3 we develop and illustrate a diagram from which the value of T_{0} can be readily seen if the value of $\frac{C_{2}}{C_{1}}$ is known.

Determination of block time

Under a block replacement, the unit is replaced at times $K T(K-1,2, \ldots)$ and at failure. The expected cost $B(T)$ per unit of time following a block replacement policy at interval T over an infinite time span is given by

$$
\begin{equation*}
B(T)=\frac{C_{1} M(T)+C_{2}}{T} \tag{1}
\end{equation*}
$$

where $M(T)$ is the renewal function (expected number of failures in $[0, T]$) corresponding to the underlying failure distribution $F(T)$. We know from reference [1] that a necessary condition that a finite value of T_{0} minimizes $B(T)$ is that it satisfies equation (2) obtained by differenciating equation (1) and setting the derivative equal to zero:

$$
\begin{gather*}
\left.\frac{\mathrm{d} B}{\mathrm{~d} T}\right|_{T=T_{0}}=0 \tag{2}\\
\Rightarrow T_{0} m\left(T_{0}\right)-M\left(T_{0}\right)=\frac{C_{2}}{C_{1}}
\end{gather*}
$$

where $m\left(T_{0}\right)$ is the derivative of $M\left(T_{0}\right)$ and is known as renewal density.
$M(T)$ can be written as follows:

$$
\begin{equation*}
M(T)=\int_{0}^{T}[1+M(T-x)] f(x) \mathrm{d} x \tag{3}
\end{equation*}
$$

Now let

$$
[1+M(T-x)] f(x)=g(T, x)
$$

We know that,

$$
\left[\int_{0}^{T} g(T, x) \mathrm{d} x\right](t)=\left[\int_{0}^{T} \partial_{1} g(T, x) \mathrm{d} x\right]+g\left(T, T_{0}\right)
$$

Now

$$
g(T, x)=f(x)+M(T-x) f(x)
$$

and

$$
\partial_{1} g(T, x)=f(x) m(T-x)
$$

Thus for $m(T)$ we have,

$$
\begin{align*}
m(T) & =\left[\int_{0}^{T} f(x) m(T-x) \mathrm{d} x\right]+\left[f(T)+M\left(T-T_{0}\right) f(T)\right]= \\
& =\int_{0}^{T} f(x) m(T-x) \mathrm{d} x+f(T) \tag{4}
\end{align*}
$$

It is to be noted that reference [1, page 50] carries an error probably a printing
error where $m(T)$ is calculated as

$$
m(T)=\int_{0}^{T}[1+m(T-x)] f(x) \mathrm{d} x,
$$

which is quite wrong.
In section 3 optimum values of block time for different values of $\frac{C_{2}}{C_{1}}$ are calculated. Fig. 1 shows that not all the values of T_{0} derived with the help of the equation 2 are optimum.

Fig. 1. Block replacement policy. ($T_{b}=$ block replacement interval, $\mathrm{PM}=$ preventive maintenance, $\mathrm{RF}=$ restoration at failure)

For the derivative of $\frac{\mathrm{d} B}{\mathrm{~d} T}$, we get the following equation:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} B}{\mathrm{~d} T^{2}}=\frac{C_{1}\left[m(T)+T m^{\prime}(T)-m(T)\right] T^{2}-2 T\left\{C_{1}[T m(T)-M(T)]-C_{2}\right\}}{T^{4}} \tag{5}
\end{equation*}
$$

Now if we want to determine the optimum block time T we get from equation (5) that the following condition should also be satisfied:

$$
\begin{equation*}
\frac{C_{1} m^{\prime}\left(T_{0}\right)}{T_{0}}>0 \tag{6}
\end{equation*}
$$

that is $\operatorname{sgn} m^{\prime}\left(T_{0}\right)=1$.
We know from trapezoidal formula that:

$$
\int_{0}^{T} f(x) \mathrm{d} x \approx \frac{h}{2} \sum_{i=0}^{N} \alpha_{i}^{N} f(a+i h)
$$

where,

$$
h=\frac{b-a}{N} \quad \text { and } \quad \alpha_{i}^{N}= \begin{cases}1 & i=N \text { or } \quad i=0 \\ 2 & \text { otherwise }\end{cases}
$$

Using the above formula and after mathematical simplification what we
get from $M(T)$ is:

$$
\begin{equation*}
\text { For } \quad i=1 \quad M(1 h)=\frac{F(1 h)}{1-\frac{h}{2} f(0)} \tag{7.a}
\end{equation*}
$$

and $i=2, \ldots, N$

$$
\begin{equation*}
M(i h)=\frac{F(i h)+h \sum_{j=1}^{i-1} f(h(i-j)) M(j h)}{1-\frac{h}{2} f(0)} \tag{7.b}
\end{equation*}
$$

And for $m(T)$ we get the following expression:

$$
\begin{equation*}
\text { For } \quad i=1 \quad m(1 h)=\frac{f(1 h)}{1-\frac{h}{2} f(0)} \tag{8.a}
\end{equation*}
$$

and for $i=2,3, \ldots, N$,

$$
\begin{equation*}
m(i h)=\frac{f(i h)+h \sum_{j=1}^{i-1} f(h(i-j)) m(j h)}{1-\frac{h}{2} f(0)} \tag{8.b}
\end{equation*}
$$

For the purpose of iteration we express equation (2) as follows:

$$
t_{n+1}=t_{n}-\frac{\left(t_{n} m\left(t_{n}\right)-M\left(t_{n}\right)-C_{21}\right)\left(t_{n}-t_{n-1}\right)}{t_{n}\left(m\left(t_{n}\right)-m\left(t_{n-1}\right)\right.}
$$

where $C_{21}=\frac{C_{2}}{C_{1}}$
If $\xi(T)=\operatorname{Tm}(T)-M(T)-C_{21}=0$

Then

$$
\begin{equation*}
t_{n+1}=t_{n}-\frac{\xi\left(t_{n}\right)\left(t_{n}-t_{n-1}\right)}{\left[m\left(t_{n}\right)-m\left(t_{n-1}\right)\right] t_{n}} \tag{9}
\end{equation*}
$$

By using a computer programme written in BASIC language in COMMODORE 64 the optimum value of T_{0} is determined. Only those values of T_{0} are accepted which satisfies the necessary condition (6) that is $\frac{C_{1} \cdot m^{\prime}\left(T_{0}\right)}{T_{0}}$ >0.

3. Simplification of the determination of preventive maintenance

interval for different values of $\frac{C_{2}}{C_{1}}$

$$
\text { let } \frac{C_{2}}{C_{1}}=C\left(T_{0}\right)
$$

Then equation (2) can be written as follows:

$$
T_{0} \cdot m\left(T_{0}\right)-M\left(T_{0}\right)=C\left(T_{0}\right)
$$

We use the same computer programme (list of which is given in the appendix) mentioned in section 2 , for different values of T_{0}, the values of $M\left(T_{0}\right)$ and $m\left(T_{0}\right)$ are calculated. By using these values $\mathrm{f} T_{0}, M\left(T_{0}\right)$ and $m\left(T_{0}\right)$, the values of $C\left(T_{0}\right)$ is determined for given T_{0}. Thus we get Fig. 2 that enables us to read optimum values of T_{0} for different values of $\frac{C_{2}}{C_{1}}$.

Example

Suppose that $F(t)=1-e^{-a t^{b}}$ where $t>0$ and $a=1.5$ (scale parameter of a Weibull distribution) $b=2$ (shape parameter of a Weibull distribution).

We are interested in $C\left(T_{0}\right)$. Now by using the computer programme given in the appendix we get Fig. 2, from which for different values of $\frac{C_{2}}{C_{1}}$ the optimum block time T_{0} can be easily read, for given a and b.

4. Conclusion

An error committed in [1] for calculating the renewal density function is corrected. A necessary condition for calculating the optimum block interval is derived. In real life the diagram shown in Fig. 2 may be used to determine the modified value of T_{0} when $\frac{C_{2}}{C_{1}}$ is changed. With the help of the procedure discussed in section 2 the block time can be easily ascertained.

Fig. 2. Block diagram of the computer program used for the generation of failure distribution under preventive maintenance. In the figure the following symbols are used of which the respective connotations are given here:
F: Name of the file where the generated failure data are to be stored NM: Number of the failures which could not be prevented
TN-D: Time between two consecutiv failures that could not be prevented
TB: Optimum block interval
D, TP: Program variables
INT(TN/TB): Number of cycle in which the failure has occurred

Reference

1. Barlow, R. E.-Proschan, F.: Mathematical Theory of Reliability, Wiley, New York, p. 256 (1965).

Chandan Chowdhury P. O. Tinsukia Tambulbari Assam PIN-786125
India

Appendix

```
1G010 OFEH1:4
1042G FPIHT
100GG FREIHT "
LEG40 FRINT "
10050 FRINT "
100E0 FFIHT "
1ggrä FRIHT"
10G60 FRIHT "
```



```
1E1g0 FFEIHT
10115 FFINT "
1G12G FFINT "
GIQE FAFAMETEFS!""
10130 FFIHT *
```



```
NEIE|LL"
LOTHOFHAL
94114%
!"
10140 IF E末="W" THEH& 10170
10150 IF E多"L" THEN 10290
101EG IF E&="G" THEN 10SOG
1017G FFINT
1G180 IHFUT " GRLE FHFHMETER GA= ":H :FFIHT#1:" A =":A
19190 IHFUT " SHAFE FHFFMETEF (E)= ":E :FFTHTH1," E =";E
10195 FEM LF:IENSIT'T FUNCTION
```



```
192GS FEM GF:FGILIIRE IISTFIEIITION
```



```
10220 B0TO 10360
10230 FEINT
```



```
10240 INFIUT " SIGMG = ":S :FFIMT#1:" SIGMH =".S
1025G IHFITT "HM = ":M :FEINT#1" MU| =",M
102E0 E=5以N(2%)
```



```
1020 G0T0 10360
1096 FRINT
102gs FEM AL,LA REE THE PHFFMETEES IF A GHMMA IISTEIEUTION
19360 IHFUT " FLFHG = ":FLCFEIHTHN:" BLFHA=":HL
```



```
1060 : =fL:C=%+5
```



```
1020日 CL=LHTAL,'t'
```



```
1GGT5 REM EF:FCCUEFD'T OF THE IFTIMDM BLOCK TIME
1GOEB IHFUT " EFS = ",EF:FFIHT#1," EFS =":EF
1GGES FEM TM:UFPEF LIMIT OF TINE TO EE DOHSIDEFED
10%90 INFUT " TMAK = ";TM:FRINT#1." TMA% ="; TM
1GGOS REM TM:HMMEE OF HIEIPETE TINE INTEFNGLS FOR HHNEFITGL TFEATMEHT
104日0 IHFUT " N = ":H :PRIHTM1." H =":H
1G41G FENNT#1
19420 H= MN/H
```



```
1W44日 IF ESC"L" THEH LFEGO=FFLLFCG
104EG FOE I=1 TO H
104EG LF(I)=FHLFCI*H)
1047G NENT I
104G日 IF E:="|" THEY 105804
```



```
15506 FOF I=C TO N
10510 U=CLFCGO+LFCIV%H2
10G20 FOR J=1 TO I-1
15500 H=W+!FCJ)WH
10540 lHEXT I
```

```
10550 GFC1%=N
105ES NEXT I
105%曻 gTO 10E1g
105TS EEN **** EOMFUTATION IF GF IN DHEE DF WEIEMLL IIST.
10GE FGFI=[1 TO H
16GO DFCI)=FNGF&IbH)
10G0G HEST I
10EG5 REM **** GOMFUTATIDH OF LM HMII GM &&**
WG1G EEM DN: FEHEWHL FIMCTIOH
10G12 EEM LM:FENENHL IEHSITH FUHETIOA
106.5 I=1-HZ2&LFE)
10604 OMC1)=0F(1)I
106GG FDE I=z TGH
10640 W=0
1065S FOF: I=1 T0I I-1
```



```
1060日 HENT J
1068 GMCIO-GFCIOHo|, I
1WGG HEST I
10TEQ :M1)=LF!1)T
1010 FOFE I=2 TO H
10%24 4-0
10%0 FOE I=1 TOI I-1
16T4W W=H+LFG-TOLSTS
16TEG HETT J
```



```
10TC日 HEST I
107EQ FOF: I=G TO H
10%gu UCI=HKI*LMCD-GMCI%
10EGQ NETT !
10919 FOF I=回TO!!
```



```
16GG㫙T !
1GE4E FrIUTHI
1EG4S FEM tw& IHFUT GOGTS +***
1OE4E EEM E: GQG MIE TD FHILLFE
1GG4E FEM GE GGT DF FFEGEHTIWE MEINTEHAHEE
10S04 IHPUT " G1 = ":C1:FFINT#1," -1 =".G1
1000 IHPYT " G2 = ",OQFFINT#1," L2 =".E2
108;g FFIHT#1
15GOELEED
1W6S 0=2%1:IF ECE THEH 11215
1GQGL FEH क-क* DEFFHIGAL FEFFESEHTATIOH क"**
1065 T N=6: IN=6
10G10 FOF: I=0 TG H
```



```
10S40 HIFES E.3
2Wg昭 FOE I=0 TO IN-1
1606 40=190-4 T) +M2$195
```



```
10%06 HENT I
11066 Z=199-04%*195
11616 LIME ロ, こ,315,2.1
11015 LIHE 0.4.0.199,1
11020 GET E$:IF E$="" THEN 11020
11000 IF O=0 THEN OOF'T
11G4G DFENL.4
116G4 HFM
```



```
11EES FED TG:IHITIAL UHLUE FOE ITEFHTIDN
11GES INFUT " TE = "SG.FFINT#1," TG =":T日
11090 TF=TG
1500 T =TG-EF
11056 : =Tg:g0G1E 11226:LF=LM
```

```
11100 :=T : GO8|E 11220
1:119 F=CT-TF%T$\T&LM-GH-D),CLM-LF%
11120 F=T-F
11100 TF=T T=F:LF=LM
1!14日 FFIHT " T=";T
11159 IF FLSCT-TFYETFOLE-T THEN 111TO
1110g tuTG11105
11170 %=T G001E 11220
11180 FRIHT#1, "OFTIHWH ELGHE TINE : T=",T
1119G FFINT#1, "ESFESTED EUST FEF UHIT TME ECT)=":(01*M+IO)T
11260 E0TG 10E40
1:10 ENII
```



```
11220 BH=%'H I=IHTOH:
```



```
1125G FETUFH
```

FEGTH:

