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Abstract 
This paper presents new stability criteria for the asymptotical stability of a first order 

nonlinear differential equation (1.1). Furthermore, stability charts and an electrical application 
of this differential equation are also presented. 

1. Introdnction 

In the scientific field we often encounter stability problems. For example 
in physics, chemistry, biology, fluid mechanics, mechanical vibrations and 
engineering. Since many physical laws and relations are mathematically 
represented in the form of a differential equation, differential equations are of 
fundamental importance in the investigation of stability problems. Among 
these various problems of stability, research was carried out on the stability of a 
special differential equation of a system under zero equilibrium state. 

The aim of this paper is to establish new stability criteria for the 
asymptotic stability of the system (1.1) under zero equilibrium state. As a result, 
stability regions are established for this system (see Figs 1, 2 and 3). We 
compare the well-known Coppel criterion for linear differential equations with 
the stability criteria of Eq. (1.1). This is represented by Figs 5 and 6. Finally, 
appropriate linear transformations and an important application in con­
nection with an electrical circuit are shown. 

This paper was first presented at the Student Scientific Conference of the 
Budapest Technical University in November 1984 and then later at the 6th 
Czechoslovak Equadiff Conference on differential equations and their 
applications, in August 1985. 

Let us consider the first order nonlinear differential equation 

x=A(t,x)x (1.1) 

[
-p 

where A= 1 1J xER2
, p=p(t, x), n=n(t,x), t~O. 

-n ' 
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Before discussing the new results (see sections 3,4 and 5), let us review the 
main theorems applied here in section 2. In fact some of these theorems and 
their proofs can be found in [3, 6]. 

2. The applied main theorems 

Let us denote by }1 the real valued function, defined by W. Coppel [7J in 
connection with matrices and applied for the estimation of the lower and upper 
bounds of solutions of linear differential equations. This function depends 

h 1· d Th d fi . . () l' 11 1 + hA 11 1 h . upon t e norm app le. e e ImtIOn }1 A = Im h ' were 1 IS 
h-> +0 

n x n unit matrix and the matrix norm 11 '11 is defined as 11 All = Sup 11 Ax 11, 
Ilxll = 1 

holds for every n x n matrix of A. In [8J, it is noted that the best possible bounds 
can be obtained by applying an appropriate linear transformation of the 
differential equation. Moreover, in the case of real and autonomous systems, 
the appropriate linear transformation is real and does not depend on the time if 
It is induced by the Euclidean norm. The Coppel criterion allows the 
appropriate linear transformations to be used for a nonlinear system as well 
[6]. 

Suppose system (1.1) is a linear and autonomous one, for example, 

(2.1) 

h [-r IJ .. were Ao = -1 _ P ,p, r are posItive constants. 

The solution x=O of equation (2.1) is asymptotically stable if, and only if, 
the roots of the characteristic equation have negative real parts. 

Now, let A be an arbitrary constant matrix. In [3J, it has been shown that 
if A is stable, then there exists an S transformation matrix such that the 
inequality 

(2.2) 

must be valid. In general, for any positive definite P there always exists a 
positive definite V such that 

VA+ATV= -Po 

Suppose P=21, where 1 is the unit matrix, then 

VA+ATV= -21. 

Since VA+ATVis symmetric and VA is not symmetric, we deduce that 

VA=Z-I, 

(2.3) 

(2.4) 

(2.5) 
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where Z is the skew - symmetric matrix, i.e. ZT = - Z. Hence, we obtain the 
explicit equation for Vas 

V=(Z_I)A-l. (2.6) 
Furthermore, suppose 

V=STS, (2.7) 
and letting 

S=DM, (2.8) 

[~ 1 0 J 1 [r 0 - 1 J T - 1 d 2 1 2 where D = 1 . M = ~ 1 ' M = M an 0:1 = /'1' 0:2 0: 2 ' Y 1 + 1'6 r 0 

= A2 • )'1' )'2 are the eigenvalues (i.e. )'1 2: )'2> 0) and the column vectors of M are 
the corresponding eigenvectors of V. One can easily see that the transformation 
matrix S can be constructed for the case of (2.2). Obviously: 

IISII=IIDII=O:l (2.9) 

I\S-11\=IID- 1 11= ~. (2.10) 0: 2 

Let 

A= [0: ~} (2.11) 
y 

and 

Z= [ 0 
-x xJ o . (2.12) 

Substitution of (2.11) and (2.12) in (2.6), gives 

(2.13) 

The Eq. (2.6) is equivalent to four scalar equations. By this reasoning, the 
unknowns a, b, c and x may be uniquely determined and we have 

V- 1 [-det (A)- [32 _y2 
- -:-(o:-+-=[3)--=d:--et-:-(A-:-) o:y + i5[3 (2.14) 

From (2.14), the elements of matrices D and M are obtained, respectively: 

D= [Ft 0 J, 0yT; 
M- 1 [ro 

- J1+r6 1 
-1J, ro 

(2.15) 

(2.16) 
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where 

and 
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)'1 =c+bro, 

)'2 =a-bro, 

a-c J(a-c)2 rO= 2b + 2b +1. 

Since S is the appropriate transformation matrix needed, we can write 

and 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

SAS- 1 +(SAS- 1)T = _2ST - 1S- 1 = -2D 1 MM TD- 1 = -2D-2. (2.21) 

From this, we deduce that 

(2.22) 

Now, let us study a more general case. Assuming A to be an arbitrary n x n 
constant matrix, let us recall some basic concepts about f.l [3, 7, 8]. 

11 f.l(A) 11 ::; 11 A 11, (2.23) 

f.l(A T
) = f.l(A), (2.24) 

f.l(cA)=cf.l(A), c~O, (2.25) 

f.l(I)= 1, (2.26) 

f.l(A + AI) = f.l(A) + A, (2.27) 

f.l(A + B)::; f.l(A) + f.l(B). (2.28) 

)'1' ... , An denote by the eigenvalues of A. Assuming that A(A) and v(A) are 
maximum Re Ai and minimum Re Ai respectively, where 1::; i::; n, then 

A(A)~f.l(A). (2.29) 
Since 

A( -A)= -v(A), 
then (2.29) implies 

- f.l( - A)::; v(A). (2.30) 

Furthermore, if the norm 11· 11 =" . "v applied in the definition of JL (see [7J) is 
defined by a positive Hermitian matrix V, i.e:" x /Iv = J x* Vx then for f.lll.llv (or 
written f.lv) we have 

. (A*V+ VA) f.lv(A)= sup Rex*VAx=A , 
11 xII = 1 2 

(2.31 ) 
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where * denotes the conjugate transpose. Obviously 11 . III is the usual Euclidean 
norm. We shall use this norm in section 3. 

Let to be a fixed real number and consider the nonlinear differential 
equation 

X= A(t, x)x, (2.32) 

where A(t, x) is a continuous matrix function defined for t 2: to and x E Rn. Then, 
for any solution x(t) of Eq. (2.32), we have 

Ilx(to)11 exp ( -l p( - A(r, x(-r)))dr) ~ 

Ilx(t)1I ~ 11 x(to) 11 exp (l p(A(r, X(r)))dr) (2.33) 

In [6], a relationship between this inequality and the transformation of the 
variables is developed in case of a linear and autonomous system. For example, 
let us consider the first order linear homogeneous differential equation having 
constant coefficients 

i=Az. (2.34) 

If the variable z is appropriately transformed to a new variable 

cv=Sz, (2.35) 

then the differential equation 

(2.36) 

for the variable cv is obtained. 
By applying Eq. (2.33) to the Eq. (2.36), an-exponential estimation can be 

given for the norm 11 cv(t)II.1f p(SAS- 1
) ~Po < 0, then lim 11 cv(t)11 = O. In fact, we 

have 

(2.37) 

Moreover, a similar exponential estimation can be obtained for the norm Ilz(t)11 
as well. 

Remark 1. From inequality (2.33) it follows that the asymptotic stability 
of the zero solution of (2.32) is implied by the condition 

p(A(r, x(r)) < b <0, (2.38) 

More precisely, the converse of this statement is not true even for the linear and 
autonomous cases. This is shown by the following: 
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example 1. Let A be defined as follows: 

A = [~ ~~ ] where a < 0, C < 0, b2 > ac. (2.39) 

It is easy to see that A is asymptotically stable. However PleA) > 0, but in the 
autonomous case the converse of our statement is true if the variable x is 
appropriately transformed. It is true that if A is asymptotically stable, then Jl( C) 
< 0, where i = C(t, x)z is the appropriately transformed equation. 

Substitution of z = Q - l(t)X where Q(t) is a continuously differentiable 
nonsingular matrix function defined for t ~ to results that (2.32) can be written 
as 

i = (Q - I (t)Q(t) + Q - l(t)A(t, x)Q{t))z = C(t, x)z. (2.40) 

Applying inequality (2.33) for (2.40), we obtain 

Ilx(to)1111 Q(to)ll- I11 Q- l(t)ll- 1 exp ( -l p( - C(r, x (r)))dr ) ~ 11 x(tlll ~ 

~llx(to)IIIIQ l(to)IIIIQ(t)11 exp (l p(C(r, X(r)))dr), t~to (2.41) 

Assuming that Q(t) is constant, we have C(c, x)= Q-I A(t, x)Q and the inequality 
(2.41) turns as the form 

Ilx(to)IIIIQII-11IQ--111 lexp ( -l(-Q IA(r,X(r))Q)dr) ~llx(t)II~ 

~lIx(to)IIIIQ-1111IQllexPCtp(Q lA(r'X(r))Q)dr}r~to. (2.42) 

Similarly, the nonlinear Eq. (1.1) can be transformed by applying the results 
above. The main idea of this transformation is to construct S for the linear and 
autonomous Eq. (2.1) which is considered similar to the nonlinear Eq. (Ll). 
Since the matrices Ao in (2.1) and A in (1.1) have similar structures, one can 
expect that S is an appropriate transformation matrix, indeed [6J. 

3. Stability criteria for equation (1.1) 

Consider the following matrix 

VAo [
-1 c] 
-c -1 ' 

(3.1) 
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where 

Ao= [=~ -~l 
and p, r are positive constants which can be determined later. We assume Vto 
be a symmetric matrix and by this condition the constant c can be determined. 
Hence, we have 

V __ 1_[P+c 
- pr+ 1 pc-l 

I-cr] . 
c+r 

From the symmetry condition, we have 

l-cr=pc-l, 

c(p+r)=2, 

2 
c=--. 

p+r 

Substitution of (3.3) in (3.2), gives 

2 
p+-

V=_I_ p+r 

pr+ 1 p-r 
p+r 

p-r 
p+r 

2 
r+--

p+r 

(3.2) 

(3.3) 

(3.4) 

To simplify the writing, we introduce the following notations for the elements 
of matrix V. 

a- _I_(p+ _.2_) b= _I_(p-r), c= _I_('r+ ~)(3.5) 
- pr+ 1 p+r' pr+ 1 p+r pr+ 1 p+r 

and matrix V turns as 

(3.6) 

The characteristic equation 

I 
a-A b 1=0 

b C-A 
(3.7) 

or 
A2-(a+c)A+ac-b2 =0, 

has roots 

1 = a+c l(a+cV b2 
Al.2 ') ±"\ ') } + . (3.8) 
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Corollary 1. The eigenvectors of Vare 

(3.9) 

where 

ro a~)'l = a;c + J(a;cy +bl , b=l=O. (3.10) 

Proof. We prove this corollary by using the definition of the eigenvector: 

[
a bJ [l"oJ = [al"o+bJ = [),~roJ. 
b c 1 bl"o+c )'1 

From this definition, of course, we write 

al"o +b =)'11"0 
and 

bl"o + c = )'1 

substitution of 1"0 in Eq. (3.12), gives 

a(a~)'l) +b=)'1 (a~)'l} 

al-a).l +bl a)'1 -)'1)'1 

b b 

But from (3.7) we write the sum and product of the roots respectively: 

Substitution of (3.15) and (3.16)in (3.14), yields 

al +b2 +ac-bl =a(a+c), 

al+ac=a(a+c), 

a(a+c)=a(a+c). 

(3.11 ) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

From this, we conclude that our corollary is valid. Since SI' S 1 are 

perpendicular, it follows that Sl = [ ~01} 
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Finally, from these assumptions we obtain expressions for the deter­
mination of the eigenvalues A I' J.. 2 and the unit eigenvectors S l' S 2 respectively: 

1 
AI ,2 = 2(pr+ 1) (P +1') ((p+r)2 +4± Ip-rl J(p+r)2 +4) (3.18) 

Sl= k[rtl S2= k[~011 (3.19) 

where 

p+r J(p+r)2 1'0 = 2 + -2- + 1, p, I' (3.20) 

are positive constants. 
Hence, we deduce the coefficient matrix function Q in the following way: 

where 

D=[~ 0 J jf;' 
M- 1 [1'0 

- Jl +1'5 1 
-IJ, 
1'0 [

-p 
A= 

1 

MT is the transpose of matrix M and D- I is the inverse of matrix D. 

Development and substitution of these matrices, yields 

1 
Q= 1 +1'5 

2 {i; 
(rop-ro -ron-l) '-l I; -(p+r5n) 

(3.21) 

Introducing the notations (Y., {3, y, 6, the elements of Q matrix can be expressed in 
the simplified form as 

Q= [~ ~l (3.24) 

This matrix is written as the sum of a symmetric matrix Qs and askew -
symmetric matrix QA: 

(3.25) 

Corollary 2. It is true that 

(3.26) 

4 Periodica Polytechnica Mechanical 31/4 
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where 

X= [::1 
Proof: 

M. S. FOFANA 

_ [0 -(I'-b)] 
QA - (I' - b) 0 . 

[
-X2(I'-b)] 

=[X l ,X2J (~) 
-Xl "I- U 

=(1' b) [X1X2 - X 1X2J 
=0. 

(3.27) 

Therefore, an obvious consequence of corollary 2 shows that Il(Q) 
=f1(Qs)· 

Corollary 3. The necessary and sufficient condition of 

XTQsX<O, 
or 

11 (Qs) <0, 
where 

Cl. 
I'+b 

2 
xi=O, Qs= 

y+b 
f3 2 

is that the following conditions must hold: 

Cl. + f3<0, 

(
Y+b)2 1Y.f3- -2- >0. 

(3.28) 

(3.29) 

(3.30) 

(3.31 ) 

Proof: Consider that the eigenvalues of Qs must be positive. From corollary 2 
and 3, it follows that f1(Qs) < 0, if the conditions (3.30) and (3.31) are true. 

By comparing Eq. (3.23) and (3.24), we obtain expressions for the 
functions p and n. We introduce the further notations a, b, c, d, e, A, B, C, D, E, 
F, G and then verify the validity of the conditions (3.30) and (3.31) respectively: 

( r6) (-1 ) 
IY.= l+r6 p+ 1+r6 n=ap+bn, (3.32) 

( 
-1 ) ( -r6) f3 = 1 + r~ p + 1 + r5 n = bp + an, (3.33) 
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Letting 

ro (),t + A2) 
e= 2(1 +r5) J)'1)'2 ' 

we have 
y+6 
-2- =ep+dn+e 

Substituting for Cf., /3, y, 6 in condition (3.31), we have 

(
Y+6)2 Cf./3- -2- =(ab-e2)p2+«a2+b2)-2ed)pn+(ab-d2)n2+ 

305 

(3.34) 

(3.35) 

(3.38) 

+( -2ee)p+( -2de)n+e2, (3.39) 

and letting 

D= -2ee, E= -2de, 

the following inequality is obtained 

r:t.+ /3=(a + b)p +(a +b)n =(a + b) (p +n), 

By similar reasoning, we write condition (3.30) as 

and letting G = a + b, we obtain the inequality 

Cf.+/3=G(p+n)<O. 

(3.41) 

(3.40) 

(3.42) 

From this, one can see that from inequality (3.40) follows inequality (3.42) too. 
The significance of these conditions can be shown by substituting some values 
for the parameters p, r (e.g. (p, r): (4, 1), (4, 0.1), (4, 0.01) and the functions 

4* 
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obtained are drawn on the (p, n) coordinate system. These are shown in Fig. 1, 
2, and 3. The shaded regions of these figures represent the stability criteria ofthe 
nonlinear Eq. (1.1). 

As a result of this section, we have the following theorem. The 
stability charts shown above can be used in the following way: if we could find 
positive constants for the parameters p, r so that the values of the functions 
p(t, x) and n(t, x) fall in the shaded region (and not tending to the boundary) of 

Fig. 1 

-tio;;-------Jao £> 

Fig. 3 

the stability charts corresponding to these constants, then the zero equilibrium 
state of the nonlinear Eq. (1.1) is asymptotically stable. Moreover, every 
solution ofthe nonlinear Eq. (1.1) tends to zero: 

lim IIx(t)II=O (3.43) 
t .... 00 

4. Application 

To illustrate a practical example of this theorem, let us consider an 
application in connection with an electrical circuit, where C, L RI' and R2 are 
constants and R3 is a nonlinear resistance (see Fig. 4). In [1,4], possibilities of 
more important applications of this theorem can be seen especially in 
connection with mechanical vibrations. 
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C -capacitance (Ic= CVd 
L -inductance (VL=Ljd 

RI' R2 - re si stances (RI' R2>O) 

Fig. 4 

R3 - nonlinear and or time dependent resistance 
I - current 
V - voltage 
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By applying Kirchhotrs laws, we obtain the differential equation of the 
electric circuit of the form 

jL 
-(RIR2 +RIR3 +R2R3) R2 

IL 
1 L L 

Rl +R2 R2 
(4.1) 

Vc ~ 
C C 

This equation can be transformed to the form ofEq. (1.1). This transformation 
is shown as follows: denoting a, b, c, d for the elements of the matrix in (4.1), we 
write Eq. (4.1) as 

z=Kz, (4.2) 

where 
-(R IR2 +R1R3 +R2R 3) R2 

K= 1 
L L -a c 

RI +R2 R2 1 -d -b ' 

C C 

z=[~l ._[jL] z- .. 
Vc 

(4.3) 

Furthermore, let 
w=Sz (4.4) 
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where 

ex and fJ are constants. 

s~ [: ~ l Z~ [~J. (4.5) 

By applying an appropriate linear transformation for the variable OJ, we 
have: 

-a 
cfJ IL 
ex ex 

w=SKS-1w (4.6) 
dex 

-b v: 
fJ fJ 

Assuming the above matrix to be symmetric, then we write 

dex cfJ 
--=-

fJ ex 
(4.7) 

If 
dl:!.=cf!.= -q, 

p a: 

then 

dl:!.=-q implies 
fJ d 

p ex q 
(4.8) 

and 

ct=-q implies 
fJ q 

a: ex c 
(4.9) 

Dividing and multiplying (4.8) by (4.9), respectively we have the following: 

q=fo, (4.10) 

ex (c 
7f='>/d' (4.11 ) 

and suppose fJ = 1, then ex = ~. 
However, substitution of (4.10) in (4.6) gives 

IL 
-a q ex 

w= 
-q -b v: 

fJ 

(4.12) 
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and factorization of q, yields 

[ -~ ciJ=q 
-1 

(4.13) 

Furthermore, we introduce another transformation. 
If i = yt, where y is a constant and i is the transformed time, then 

dw dw dt 
Ch = Cit' di' (4.14) 

where 

dt 
di = Y (4.15) 

Substitution of (4.15) in (4.14), gives 

a 
1 

IL 
dw q q ex 
-=-
di Y -1 

b ~ 
(4.16) 

q f3 

From this, the required result follows on, letting 

IL 
a b (J. =[:J y=q, - =P, - =n, W= 
q q ~ 

f3 
and W(t(i))=X(i}. 

Hence, we deduce 

(4.17) 

Observe that the original Eq. (1.1) is obtained. 
The system (4.1) under equilibrium state (i.e. I L = ~ = 0) is asymptotically 

stable if C, L, Rl and R2 are positive constants. On the other hand, the stability 
criteria allow that asymptotic stability can hold when R3 (i.e. P and n) is a 
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variable and lies within the stability region. But surprisingly, it has been shown 
in this work that for R3 and p being negative variables, asymptotic stability can 
also hold, if R3 , P remain within the stability regions (see Figs 1,2 and 3). In 
other words, the negative nonlinear resistance R3 keeps on adding energy into 
the system yet the total energy in the system decreases and the equilibrium 
point is asymptotically stable if R3 remains within the stability regions 
established above. 

5. Remarks 

From the estimation point of view of the stability criteria, we consider the 
following assumptions. When p and n are constants (i.e. p = r, n = p) the 
solution x == 0 of Equation (1.1) is asymptotically stable if, and only if, 

r+ p>O, (5.1) 

rp> -1. (5.2) 

Namely, we write equation (1.1) as 

The characteristic equation 

or 

has roots 

[
-r-A 
-1 

1 ]-0 -p-), -

, _-(r+p)±J(r+p)2-4(pr+1) 
11.1.2- 2 . 

(5.3) 

(5.4) 

(5.5) 

The solution x == 0 of Eq. (5.3) is asymptotically stable if, and only if, the roots 
AI' A2 of the characteristic Eq. (5.4) have negative real parts. This can only hold 
if the two conditions (5.1) and (5.2) are valid. Thus the domain of these 
conditions is shown in Fig. 5. On the other hand, if p and n are variables, then 
the well-known stability criterion of asymptotic stability .u(A) < 0 is obtained. 
Similarly, in [7], we can see that .u(A) = max . ( - p, - n); which implies that the 
functions pet, x) and net, x) have positive values for every value ofthe time t;?: to 
and x. This is represented by the shaded region in Fig. 6. 

However, it has been shown in this paper that in special cases, when p is 
negative for a nonlinear system, the asymptotic stability (Figs 5 and 6) can hold 
as well (see Figs 1,2 and 3). 
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Fig. 5 
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