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Abstract 

This paper presents an application of a discrete function class, i.e. the monotone s­
coherent discrete functions and an extending concept [6J for the use of binary variables in 
muitistate system investigation. Two propositions are proven for the purpose of the 
generalization procedure. Some illustrative examples are shown which prove that its application 
is simple and very suitable for the calculation of multistate system reliability. 

Introduction 

In the engineering domain many reliability investigations are not suitable 
if one assumes that the system and its components are either functioning or 
have failed. That is, mathematically we consider the system in question as a 
binary system. This concept not always proves the real situation [1,2,3,5,6, 7J 
because not only the function or the failure of systems but their performance 
levels interest us also. For instance, an electrical plant having 5 identical 
gene:-ators may function without breakdown even if some of the generators 
have failed (or are out of service). Of course, the best function quality of this 
system may be obtained when all generators function normally or are at full 
power. Corresponding to requirement one has to state the threshold level 
(usually expressed by an integer number) of the system. After the statement of 
system levels it is evident that the level number of components and of the 
system is higher than 2, i.e. their variables stop to be binary, they become multi­
valued. The other example is encountered when we have to consider the three­
state device systems. A fluid flow valve and electronic diode are typical 
examples of three-state devices. Either of these components may fail 
catastrophically in either the open or closed (shorted) mode. A given device will 
then have a probability of failure in the open mode and a probability failure in 
the closed or shorted mode. Because a three-state device cannot fail 
simultaneously in both the open and the closed modes, the failures are mutually 
exclusive events. The failure of any such device is considered independent of all 
the others. 
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In the following section we will use an extending method based on the 
binary variables to study the multistate systems of a special generation [6]. 

Notations, nomenclatures and definitions 

Because the method in question is derived from the binary system theory 
and for the sake of better understanding we want to show in the following the 
analogy between the two concepts (i.e. binary and multistate). 

F or binary systems 

a. Notations 

Xi = state of component i, Xi E {a, I} = {failed, functioning}. 
Pi Pr {Xi 1} (probability of event Xi= 1) 
X = (X I' ... , Xi' ... , X n), vector of component states. 
n = number of system components. 
cp(X) = state of system, called system structure function 

(X)= {I if system is functioning 
cp ° if system has failed 

b. Nomenclatures and definitions 

Monotone: a system for which 

{
o if X=O 

cp (X) = 1 if X = 1 

and cp(X) is nondecreasing in X. 
Relevant: component i is relevant if there exists a set of component states 

{Xv\Xi}' v=l,n; iE{I,2, ... ,n} 

(where 1, n = 1, 2, ... , n) such that 

and 
cp(X I ,·· .,X i - I , I,Xi + 1 ,·· .,Xn)=1. 

Series configuration: a system for which 

{ .n Xi = min (X;) = 1 if all components function 
cp(X)= ,= 1 . ° otherwIse 
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Parallel configuration: a system for which 
n 

{ 

1- .n (1-X i)=max (XJ=O if all components fail 
(.X)= 1= 1 

q> 1 otherwise 

k-out-of-n: G: a system for which 

(X) = {I if at least k of its n elements function 
q> 0 otherwise 

k-out-of-n: F: a system for which 

(X) = {O iff at le~st k of its n elements are failed 
q> 1 otherWIse 

Reliability: Probability that the system functions without repair or 
replacement = Pr {q>(X) = I} = E{ q>(X)}. 

Mincut set: a minimal set of components such that if all components in 
the set have failed then the system fails. 

Minpath set: minimal set of components, such that if all components in 
the set function then the system functions. 

For multistate systems 

a. Notations 

Xi = state of component i, Xi E {O, 1, ... , N}. 
N i = best state of component i. 
X = (X 1, ... , X n), vector of component states. 
n = number of system components 
X ij = indicator, meaning that 

X .. = {1 if Xi~j 
IJ 0 otherwise 

Pij= Pr {Xij= 1} 
q>(X) = state of the system, called the system structure function; 

q>(X) E {O, 1, ... , M} 
M = best state of the system. 

q>k(X)= {Ol if q>(X)~k 
otherwise 

i.e., q>k(X) is a binary monotone structure function which gives only two values: 
{1,O}. 

5* 
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b. Nomenclatures and definitions 

Monotone: a system for which 

cp(X)= {o ~f X=O 
M If X=(N 1, ... , N n) 

and cp(X) is nondecreasing in X. 
Relevant: component i is relevant if there exists a set of component states 

{Xv\X i }, v=l,n, iE{1,2, .. . ,n} such that 

cp(X 1 ,·· .,X i - 1 ,O,Xi + 1 ,·· .,Xn)<cp(X 1 ,·· .,Xi-l,Ni,Xn+l'·· .,Xn) 

Series configuration: a system for which 

cp(X)=min (X;) 

Parallel configuration: a system for which 

cp(X) = max (X;) 

k-out-of-n: G: a system for which 

cp(X) = max U: at least k components are above or at level j) 

Series configuration at level j: a system for which 

cp(X)=j iffmin (Xi)=j 

Parallel configuration at level j: a system for which 

cp(X)=j iffmax (Xi)=j 

k-out-of-n: G: at level j: a system for which 

cp (X) = j iff at least k components are at or above level j 

Reliability at level k: probability that the system state is k or higher 
= Pr {cp(X)~k} = Pr {cpk(X)} E{ cpk(X)} (because of the monotone character 
of the system). 

After these it is necessary to define the concept of the s-coherent system a.s 
soon as one of the s-coherent structures functions. 

A system is called s-coherent iff 
1) everyone of its components plays a role in the system, 
2) any state change of any element influences the system, 
3) the direction ofthe state change is consistent with that of the change of 

the system. 
It is evident that these three conditions of the s-coherent system also mean 

that, if any component is not s-coherent then the system is not s-coherent, too. 
This definition holds for both binary and multistate systems. 
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Note that a binary s-coherent structure function is a binary monotone 
structure function for which all components are relevant. Corresponding to the 
monotone and s-coherent properties of multistate system structure function 
<J>(X) which may be received by means of two propositions, shown in the next 
section, connected to binary variables. 

Determination of component state and structure function 
(system state) in multistate case by means of binary variables 

For determination of the component state in a multistate case the 
following proposition will be used: 

Proposition 1. From the definition of indicator Xij the state of multi state 
component i, Xi' may be derived from a sum of binary variables as follows 

Proof From the definition of Xij given above, i.e. 

v _ {O if Xi<j 
Aij- 1 if Xi:?) 

(1) 

the proposition is evident. We assume namely, Xi = j and take an index jo ~j. 
The proof is to check, allowing (1) whether Xi equals j or not? For this purpose, 
we first, consider the truth of relations as follows 

(a) 

(b) 

We see that the relation (b) is true, because the given value j 0 ~j, therefore this 
means that 

X ijo = 1, V jo ~j =Xi (2) 

Besides, the expression (1) is equivalent to two corresponding partial sums, that 
is 

(3) 

From (2) we find that 

(4) 

and we can prove that in the right-hand-side of(3) the second term is zero. That 
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Xiv { 
(v=j+ 1) 
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o if Xi=j<v 

if Xi = F;? v 

relation (c) is true. This fact means that 

Xi=O, 'iv>j 

(c) 

(d) 

(5) 

from which the mentioned second term really equals zero. Because the given 
value Xi (i.e. j) is optional, the proof is completed. 0 

Consequently 
(6) 

and 

(7) 

We see, the result is totally identical with the definition of the best state of the 
component. This fact means that the generalization procedure based on the 
binary variables is logically true. 

Proposition 2. From the definition of cp\X) the state of the muItistate 
system is M 

qJ(X)= L qJk(X) (8) 
k=1 

Proof By the definition of qJk(X) and with the procedure used to prove 
Proposition 1, Proposition 2 is evident. 0 

Block-diagram and event tree 

For multistate systems the reliability at level k is determined by 
constructing the block diagram corresponding to qJk(X) and then calculating 
Pr {qJk(X) = I}. If the components are s-independent and if, for each component 
i, at most one binary variable Xij appears at most once in the block diagram, 
then reliability can be calculated as though the binary components were s­
independent. Otherwise, conditional probability expansions are necessary. 

Remember that a block diagram is a logic diagram composed of series 
and parallel configurations. However, a block diagram is not limited to systems 
which have only series and parallel combination of components since it is well 
known that a system can be represented in terms of its minpath sets or mincut 
sets [8]. Each block in a block diagram represents a binary random variable. 

The series configuration replaces n blocks in series with 
n 

OXi 
i= 1 
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while the parallel one replaces n blocks in parallel with 
n 

1- n (I-Xl 
i= 1 

As for the event tree, from the block diagram and with the well-known 
correspondances existing between series configuration and AND gate ( G ), or 
between the parallel configuration and OR gate ( ~ ) [3J the corresponding 
event tree of qi(X) can be constructed and from it the system reliability at level k 
may be determined. 

Illustrative examples 

Example 1: There is a monotone s-coherent multistate system consisting 
of two four-state components X 1 and X 2' i.e., 

and 

and 

X(X l ,X2)-n=2 

Xl E {a, 1,2, 3}-N l =3 
X 2 E {O, 1, 2, 3} - N 2 = 3 

tp(X)= tp(X l' X 2) E {a, 1,2, 3}-M =3 

with its representation in value table [4J as follows 

~ ° 1 2 3 

X2 

° ° 0 2 

° 2 2 

2 2 2 3 

3 2 2 3 3 

Determine the structure functions tpk(X), their block diagram and event 
tree (success) and system reliability at level 1. 

Before determining the value of tp(X) check concretely some values of Xi 
after (1). 

First, let Xl be 2. By means of (1) we have 
3 

X l = L Xlj=X l1 +X12 
j= 1 
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Because 

X _ {o if X 1 < 1? I 
11-

1 if X 1 2:: 1? Xl = 2 

therefore 

Similarly 

from which 
X 12 = 1. 

We may see that ifj=3 then X13=O, namely 

X
13

= {o if Xl <3? I 
1 if X 1 2:: 3? Xl = 2 

and thus X 13 is zero! After all 

X 1 = X 11 + X 12 + X 13 1 + 1 + ° = 2, 

the result thus really is true. 
Similarly, controlling the value of X 2 is possible in the same way. 
Now, we determine the structure functions (l(X) from the given values of 

<p(X) (in the value table). We receive the foHowing results: 

<p(0, 0)= <p(1, 0)= <p(0, 1)=0 

<p(2,0) <p(1,1)=<p(0,2)=1 

<p(0,3)=<p(1,3)=<p(1,2) <p(2,2)=<p(2, 1)=<p(3, 1)=<p(3,0)= 

= <p(3, 0)=2 

<p(3, 2) = <p(2, 3) = <p(3, 3) = 3 

from which 

<p1(X) = <p1(X 12, X 11X 21, X 22) 

<p2(X) = <p2(X 23' X l1X 23' X l1X 22' X 12X 22, X 12X 21' X 13X 21' X 13) 

<p3(X) = <p3(X 13X 22, X 12X 23' X 13X 23) 

The corresponding block -diagrams and event trees are shown in Fig. 1. (It 
is well known that the fault tree may be derived from the success event tree as a 
complement or negation of it). 

Because both the state levels and the components appear in the block-
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~ 
~ 

Fig. 1 

diagram of q>(X) the conditional probability expansion will be used: 

E{ q>1(X)} =p 12E{ q>l(X)jX 12 = 1} +(1- P 12)E{ q>l(X)jX 12 =o} 

327 

= p 12 + (1- P 12)P 22 + (1- P 12)(1- P 22)E{ q>l(X)jX 12 = 0, X 22 

=o} 

-P22)· 

Example 2: Consider an oil supply consisting of three identical gear­
pumps working in a parallel configuration connecting with a common oil filter. 
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4.k 

Fig. 2 

Corresponding to revolution per minute (RPM) the volumetrical flow may 
supply 0%,25%,50%, 75% and 100% of the maximal performance (correspond­
ing to states 0,1,2,3 and 4). Pipelines are assumed to be perfect. The system is 
acceptable if one of the three pumps functions perfectly, assuming s­
independent components. 

With the given conditions, both the block diagram and the event tree at 
level k are easily constructed (see Fig. 2) where blocks 1, 2, 3 represent the 
pumps and block 4 represents the oil filter. 

After the block diagram corresponding to ql(X) the result is 

Pr { (l(X) = I} = P 4k[1-(1- P lk) (1- P2k) (1-P3k)] 

Conclusion and discussion 

As we see in the introduction, in the engineering domain multi state 
systems are usually encountered because of different concepts. In other words 
the causes of a system being multistate system are not the same, each occurs 
through system performance or efficiency and the other differing occurrence in 
different positions. There are many other concepts which may be discussed in 
detail. 

By means of binary variables and at simpler systems the multistate 
concept may be handled without special difficulties. Also, with two simple 
propositions and generalization steps from a binary system into a multi-valued 
system and a set of generalized definitions, multi state components, con­
figurations and systems are defined. 

We may see that corresponding to the state level in question the block 
diagram and event (or fault) tree are easily constructed, from which system 
reliability at the mentioned level may be calculated. It is very interesting to 
observe that from a given system the structure function, viz. the block diagram 
and event tree may have different configurations corresponding to the state 
level of interest. 
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The truth is that at more complicate system structures the effectiveness of 
the method is no more evident, furthermore it may be lost in the case of certain 
system complexity. 

In general in spite of the s-independence existing between the.eIements of 
the system, instead of conditionless probability, condition probability 
expansion is used in reliability calculations because with a binary state 
representation, redundancy and state level, as conditions, occur in the block 
diagram or in the event tree at the level in question. 

Remember that this method may only be used for the monotone s­
coherent systems, but it is well known that in general both engineering systems 
always satisfy these conditions. Thus, this method is very useful in the technical 
domain. 
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