RENTABILITY OF NC MACHINES AND INPUT/OUTPUT ANALYSIS*

K. Maczó
Department for Industrial Engineering, Technical University, H-1521 Budapest
Received June 19, 1984
Presented by Prof. Dr. L. Ladó

Summary

Through analyzing a NC machine, this article shows the influence of inputs and outputs on efficient operation. Starting from the technical-economical parameters, normal and capacity dependent cost standards are introduced, and the so-called planned passive costs are defined as a difference between standard and normal capacity utilization. The different inputs of different capacities are also illustrated. The influences of working point movements as a result of changing intensity, capacity utilization and input are analyzed, as well. In the end, the weak points of the system are defined, where intervention is needed.

NC and CNC machines are of great value, consequently all the firms having such machines strive for making the best use of them. Utilization is generally measured by the ratio of the theoretical and the executed (real) working hours/month.

The definition of the monthly theoretical-planned-working hours is a basic and constant problem. Namely, value is influenced by a lot of nonmeasurable factors (shift utilization, working order, maintenance periods etc.).

It seems always advantageous to define three shifts for the NC machines. The only question is: how are these three shifts utilized from output's point of view, i.e. what kind of product is produced, and how economically (how large is its coverage). This kind of economical calculation generally lacks company information.

Costs expressing inputs can be better estimated. When all information is available, the cost/hour values can analitically be defined. This machine time costs are, however, to be treated carefully, since they contain only the direct operating costs, but not the indirect (general) costs resulting from all the other machines’ operation.

In spite of this apparent inaccuracy, machine time costs bear quite good information on the "capacity value" of the machine.

[^0]Standard costing is based on integrated use of all the above informations. To measure effectiveness this method originates in capacity. If the amount of capacity is known, then the optimal, i.e. standard costs related to possible utilization can be defined. From standard costs, the cost/working hour values and the planned and real non-standard costs (related to different levels of utilization) are to be defined.

Comparing the standard, planned and real times and their costs one gets the so-called passive costs.

The first group of passive costs comes deliberately into being, when the utilization level is-due to certain causes-lower than standard value. Also in this case arises loss, but it can be regarded as planned loss (planned passive cost). All the deviations from the planned capacity utilization strongly influence the operational rentability. This influence can be exactly defined.

Such a way, company management has more information than the single machine time cost, namely input/output ratios and their consequences on rentability.

Next an input/output analysis will be shown for a CNC machine widespread in Hungary (lathe, type EV 630).

Standard cost calculation for CNC lathe type EV 630-10
Data used in calculation

- Activated value of the machine
- Amortization period
- Groundface of the machine
- Value of workshop area
- Amortization ratio
- Electrical power consumption
- Power consumption factor
- Electrical power unit cost days
- Working days/year
- Number of shifts
- Shift utilization factor
- planned ($\mathrm{sup}_{\text {}}$)
- optimal (s_{u})
- Hourly wage of a skilled worker
- Taxes and public insurance
- Tooling costs
- Maintenance costs
- Costs of technical preparation
6.236.000 Forints

7 years
$30 \mathrm{~m}^{2}$
4.184 Forints $/ \mathrm{m}^{2}$
1.3% /year
42 kW
0,97
1.57 Forints/kW hour

255 days
3
0.82 (82%)
$0.86(86 \%)$
28 Forints/hour
40\%
210.000 Forints/year
785.000 Forints/year
30.000 Forints/year

Calculating machine-hour costs

- Useful (net) working time (for 3 shifts)
a) optimal net working time
$T_{\mathrm{no}}=255 \cdot 0.86 \cdot 8 \cdot 3=5269$ hours/year
b) expected net working time
$T_{\mathrm{ne}}=255 \cdot 0.82 \cdot 8 \cdot 3=5018.4$ hours/year
- useful (net) working time (for one shift) $255 \cdot 0.82 \cdot 8=1673$ hours/year
(In the above calculations 8 hours/day is assumed.)

Amortization (of the machine)

- activated value: 6326000 Forints
- amortization period: 7 years
- amortization costs:

$$
\frac{6326000}{7}=903.71 \text { Forints/year }
$$

- amortization key:

$$
\frac{903.71}{6326000}=14.3 \% / \text { year }
$$

- amortization cost/one
machine hour: $\frac{903.71}{5018.4}=180.08$ Forints/hour

Amortization (of building and area)

- amortization of the building:

4184 Forints $/ \mathrm{m}^{2} \cdot 30 \mathrm{~m}^{2}=125532$ Forints

- amortization of the area:

$$
\frac{125532 \cdot 1.3}{100}=1631.92 \text { Forints } / \text { year }
$$

- amortization cost/one machine hour:

$$
\frac{1631.92}{5018.4}=0.33 \text { Forints } / \text { hour }
$$

Manpower costs

- hourly wage: 28 Forints/hour
- yearly wage: $5018.4 \cdot 28=140515.2$ Forints/year
- taxes and public insurance:
$0.4 \cdot 28$ Forints/hour $=11.2$ Forints/hour
- yearly taxes and public insurance:
$140515.2 \cdot 0.4=56206.08$
Summarizing the manpower costs:

	Forints/hour	Forints/year
Wage	28	140515.2
Taxes +insurance	11,2	56206.08
Total	39.2	196721.28

Energy costs

- power consumption: 42 kW
- power consumption factor: 0.97
- unit cost of power: 1.57 Forints/kW hour
- yearly power consumption:
$42 \cdot 0.97 \cdot 5018.4=204449.62 \mathrm{~kW}$ hours/year
- energy costs:
$204449.61 \cdot 1.57=320985.9$ Forints/year
- energy costs/hour: 63.96 Forints/hour

Tooling costs:
210000 Forints/year
41.85 Forints/hour

Maintenance costs:

785000 Forints/year
156.42 Forints/hour

Costs of technical preparation:
30000 Forints/year
5.98 Forints/hour

Machine-hour costs in total
Amortization (machine + workshop area) 180.41 Forints/hour
Wages + taxes and insurance
Energy
Tooling
Maintenance
Technical preparation
39.2 Forints/hour
63.96 Forints/hour
41.85 Forints/hour
156.42 Forints/hour
5.98 Forints/hour
487.82 Forints/hour

Calculating utilization difference

Planned cost of planned production
$\mathrm{C}_{\mathrm{pp}}=\mathrm{c}_{\mathrm{pp}} \cdot \mathrm{u}_{\mathrm{pp}}=487.8 \cdot 5018.4=2448000$ Forints/year
Planned cost of planned production on standard level:
$\mathrm{C}_{\mathrm{ppst}}=\mathrm{c}_{\mathrm{st}} \cdot \mathrm{u}_{\mathrm{pp}}=475.6 \cdot 5018.4=2386700$ Forints/year
Planned passive cost:
$\mathrm{C}_{\mathrm{pp}}-\mathrm{C}_{\mathrm{ppst}}=2448-2386.7=61300$ Forints/year (Fig. 1.)
Control, based on standard cost/hour:
planned per unit cost of per unit standard cost difference:
$\mathrm{c}_{\mathrm{pp}}=487.8$ Forints/hour
$\mathrm{c}_{\mathrm{st}}=475.6$ Forints hour
12.2 Forints/hour

Capacity utilization of planned production:
$u_{p p}=5018.4$ hours/year

Fig. 1. Diagram of planned passive costs

Defining standard and utilization dependent cost norms

Capacity utilization (\%)			85\%			90%			95\%			100\%		
Hours/year			4516.5			4767.5			5018.4			5269.3		
Cost firctor	machine-hour: Forints/year		K_{p}	K.	K_{1}	K_{p}	K_{1}	K_{1}	${ }^{K_{1}}$	K	k_{1}	${ }_{K}{ }_{p}$	K_{1}	K_{1}
Amortization	180.41	0		905.370	905370		905370	90.5370		90.5370	90.5370		905.370	905370
Wages + taxes and insurance	39.2	1	177047		177047	186886		186886	196721		196721	206556		206556
Energy cost	63.96	1	288884		288884	304938		.304938	320986		320986	337034		337034
Tooling cost	41.85	0.8	151198	42000	195198	159601	42000	201601	168000	42000	210000	176390	42000	218.399
Maintenance cosi	156.42	0.6	42.3894	314000	737894	447452	314000	761452	471000	314000	78.5000	494548	314000	808.848
Cost of technical preparation	5.98	0		30000	30000		30000	30000		30000	30000		30000	30000
Total	487.82		1041023	1291370	2332.393	1008887	1291370	23902.47	11.56707	1291370	2448077	12145.37	1291370	2505907
Machine-hour cost	Forints/hour		230.5		516.4	230.5		501.4	230.5		487.8	230.5		475.6

"Standard" utilization: 100%
$K=$ proportional cost
$K^{p}=$ lixed cost
$\mathrm{K}_{\mathrm{t}}=$ total cost

Summary and interpretation of resulls*

Capacity utilization machine-hour/year	Type of costs	Cost value and calculation	
		Thousand Forints/year	Forims/hour
$\mathrm{u}_{\mathrm{st}}=5269.3$ (100%)	standard cost $\left(C_{4} ; C_{x}\right)$	$\begin{aligned} & C_{\mathrm{xt}}=2505.9 \\ & \mathrm{C}_{\mathrm{pst}}=1214.5 \end{aligned}$	$\begin{gathered} c_{s t}=\frac{C_{\mathrm{st}}}{u_{\mathrm{st}}}=\frac{2505907}{5269.3}=475.6 \\ \mathrm{c}_{\mathrm{pm}}=\frac{C_{\mathrm{p} 41}}{\mathrm{u}_{\mathrm{st}}}=\frac{1214537}{5269.3}=230.5 \end{gathered}$
$\begin{gathered} u_{p p}=5018.4 \\ (95 \%) \end{gathered}$	planned cost of planned production $\left(C_{p, r} ; c_{p p}\right)$	$\begin{aligned} C_{p p} & =C_{p p}+C_{\mathrm{f}}=2448.0 \\ C_{p p p} & =1156.7 \\ C_{\mathrm{f}} & =1291.37 \\ C_{p p} & =c_{p p p} \cdot u_{p p}+C_{i} \\ C_{p p} & =c_{p, y} \cdot u_{p p} \end{aligned}$	
$\begin{aligned} u= & 4767.5 \\ & (90 \%) \end{aligned}$	actual cost of production (C; c)	$\begin{gathered} C=C_{p}+C_{i}=2390.2 \\ C_{\mathrm{p}}=1098.9 \\ C_{\mathrm{f}}=1291.37 \end{gathered}$	$\begin{aligned} & c=\frac{C}{u}=\frac{2390247}{4767.5}=501.4 \\ & c_{\mathrm{p}} \frac{C_{p}}{u}=\frac{1098877}{4767.5}=230.5 \end{aligned}$

$\begin{aligned} * \text { in our example: "standard" utilization } & =100 \% \\ \text { planned utilization } & =95 \%\end{aligned}$
$\begin{array}{ll}\text { planned utilization } & =95 \% \\ \text { measured, actual utilization } & =90 \%\end{array}$

Passive cost:

5018 hour/year \cdot 12.2 Forints/year $=$ 61300 Forints/year

Costs of the actual production
Actual (measured) capacity utilization: 90%. Related working hours/year: 4767.5.

The further analysis may have two directions:
1 Actual costs of actual production are equal to planned costs of actual production, i.e. costs of actual production are acceptable (reasonable) even from the plan's point of view.

In this case:
$\mathrm{u}=\mathrm{u}_{\mathrm{ap}}=4767.5$ hours $/$ year
$\mathrm{C}=\mathrm{C}_{\mathrm{ap}}=2390200$ Forints/year
$\mathrm{c}=\mathrm{c}_{\mathrm{ap}}=501.4$ Forints/hour
$C_{p}=C_{p a p}=1098900$ Forints/year
$c_{p}=c_{p a p}=230.5$ Forints/hour
where the index "ap" is for "actual" and "planned"
2 Actual costs of actual production are not equal to the planned costs of actual production, i.e. the inputs of the real production would be reasonable only in case of 5% lower utilization.

In this case:

Type of cost	capacity utilization machinehours/year	Cost	
		thousand Forints/year	Forints/year
planned cost of		$\mathrm{C}_{\text {ap }}=\mathrm{C}_{\text {p2p }}+\mathrm{C}_{\text {fi }}=$	$c_{a p}=\frac{C_{u p}}{u_{\mathrm{ap}}}=\frac{2332393}{4516.5}=516.4$
	$\mathrm{u}_{\mathrm{ap}}=4516.5$	$=1041+1291.37=2332.37$	
($\mathrm{C}_{\mathrm{ap}} ; \mathrm{c}_{\mathrm{ap}}$)		$\left(C_{p a p}=c_{p s t} \cdot u_{3 s}\right)$	$\mathrm{c}_{\mathrm{pap}}=\frac{\mathrm{C}_{\mathrm{pap}}}{\mathrm{u}_{\mathrm{ap}}}=\frac{1041023}{4516.5}=230.5$

Calculation of actual production costs

transformed to plan level
Analysis according to 1 assumption
$\mathrm{u}=\mathrm{u}_{\mathrm{ap}}=4767.5$ hours/year
$\mathrm{C}=\mathrm{C}_{\mathrm{ap}}=2390200$ Forints/year
$\mathrm{c}=\mathrm{c}_{\mathrm{ap}}=501.4$ Forints/hour
Costs of the actual production (transformed on the plan) on standard level:
$C_{a p(s t)}=u \cdot c_{s t}=4767.5 \cdot 475.6=2267420$ Forints/year

Capacity utilization difference:
$\mathrm{C}_{\mathrm{ap}}-\mathrm{C}_{\mathrm{ap}(\mathrm{s}) \mathrm{l}}=2390000-2267400=122780$ Forints/year
(Fig. 2)

Fig. 2. Capacity utilization difference according to assumption 6.1

Control based on specific time expenditure:
$\mathrm{c}_{\mathrm{ap}}-\mathrm{c}_{\mathrm{st}}=501.4-475.6=25.8$ Forints/hour
$25.8 \cdot u=25.8 \cdot 4767.5 \approx 122780$ Forints/year
Input difference:
$\mathrm{C}=\mathrm{C}_{\mathrm{ap}}=2390200$ Forints/year
$\mathrm{C}-\mathrm{C}_{\mathrm{st}}=0$

Analysis according to 2 assumption

(It is assumed that actual expenditures would require cca. 5% less capacity utilization on plan level.)

Basic data:
$\mathrm{u}_{\mathrm{ap}}=4516.5$ machine-hours/year
$\mathrm{C}_{\mathrm{ap}}=2332370$ Forints/year
$C_{\text {pap }}=1041000$ Forints/year
$\mathrm{c}_{\mathrm{ap}}=516.4$ Forints/hour
$\mathrm{c}_{\text {pap }}=230.5$ Forints/hour
$\mathrm{c}_{\mathrm{st}}=475.6$ Forints/hour
Cost of actual production (transformed on the plan) on standard level:
$C_{a p(s t)}=u_{a p} \cdot c_{s t}=4516.5 \cdot 475.6=2148040$ Forints/year
Capacity utilization difference:
$C_{a p}-C_{a p(s t)}=2332370-2148040=184330$ Forints/year
Control based on specific time expenditure:
$c_{a p}-c_{s t}=516.4-475.6=40.8$ Forints/hour
$40.8 \cdot \mathrm{u}_{\mathrm{ap}}=40.8 \cdot 4516.5 \approx 184330$ Forints/year

Input difference

$C($ actual $)=2390200$ Forints/year
C_{ap} (planned) $=2332370$ Forints/year
$\mathrm{C}-\mathrm{C}_{\mathrm{ap}}=2390200-2332370=57830$ Forints/year

Fig. 3. Capacity utilization difference and input difference according to assumption 6.2

Total difference (Fig. 3)

Capacity utilization difference: Expenditure difference:

Total:

184330 Forints/year
57830 Forints/year
242160 Forints/year

Calculation with working point displacement

Intensity difference

In case of 2 assumption, intensity difference can be calculated.
Actual production on standard level:
$C_{(s t)}=u \cdot c_{\mathrm{st}}=4767.5 \cdot 475.6=2267420$ Forints/year
Standard costs of actual production, transformed on the plan:
$C_{\mathrm{up}(\mathrm{tt})}=\mathrm{u}_{\mathrm{ap}} \cdot \mathrm{c}_{\mathrm{st}}=4516.5 \cdot 475.6=2148040$ Forints/year

Fig. 4. Representation of intensity difference

Intensity difference: (Fig. 4)

$\mathrm{C}_{\mathrm{ap}(\mathrm{st})}-\mathrm{C}_{(\mathrm{st})}=2148040-2267420=-119380$ Forints/year
Control, based on specific time expenditure:
$\left(u_{a p}-u\right) \cdot c_{s t}=4516.5-4767.5 \cdot 475.6=251 \cdot 475.6=119380$ Forints/year

Capacity utilization difference for the modified working point

Capacity utilization difference:

- Available capacity:
- Used:
$\mathrm{u}_{\mathrm{ap}}=5269.3$ hours/year
$u=4767.5$ hours/year
- Actual cost of actual production on standard level:

2267420 Forints/year
Planned costs of actual production modified for the actual capacity utilization:
$\mathrm{C}_{\mathrm{up}}=\left(\mathrm{C}_{\mathrm{ppp}} \cdot \mathrm{u}\right)+\mathrm{C}_{\mathrm{f}}=(230.5 \cdot 4767.5)+1291370=2390270$ Forints/year Capacity utilization difference:
$\mathrm{C}_{\mathrm{up}}-\mathrm{C}_{\mathrm{st}}=2390270-2267420=1228500$ Forints/year
Input difference:
$C-C_{\text {up }}=2390200-2390270=-70$ Forints/year (almost zero)

Fig. 5. Representation of the total difference based on working point displacement

Total difference taking working point displacement into consideration: (Fig. 5)

- Intensity difference:
- Capacity utilization difference:

Total:

- Input difference:

119380 Forints/year
1128500 Forints/year

1247880 Forints/year
70 Forints/year
1247810 Forints/year

Conclusion

a) When the standard (100%) capacity utilization of the CNC machine type EV 630 is planned for 95%, the resulting passive cost is 61300 Forints/year on plan level.
b) A further 122780 Forints/year capacity utilization difference is to be calculated when the measured actual capacity utilization is 90%, and inputs are reasonable according to plan ($\mathrm{C}=\mathrm{C}_{\mathrm{ap}}, \mathrm{u}=\mathrm{u}_{\mathrm{ap}}$).
c) Assuming that actual inputs would require by 5% less planned capacity utilization, an input difference also occurs. Its value-with capacity utilization difference of 184330 Forints/year-is 57830 Forints/year.
d) Accepting the assumption mentioned in c) there is an intensity differerce, too, resulting from working point displacement. It is caused by the difference of standard costs of actual production's time requirement (u), and its actual reasonable time requirement (u_{ap}).
e) As a result of working point displacement, an additional capacity utilization and input difference is involved by the total difference (the values are 1128500 Forints/year and 70 Forints/year, respectively).

Our intentionally complex analysis aimed at calling the attention to the fact, that different levels of capacity utilization result in different costs which influence the machine's operational efficiency. These calculations are very useful aids in the management when valuable machines and equipments are at disposal.

Dr. Kálmán Maczó H-1521 Budapest

[^0]: * This paper was prepared on the book of L. Ladó: Cost-benefit analysis. (In Hungarian). Közgazdasági és Jogi Könyvkiadó. Budapest. 1981.

