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Summary 

The problem of pure torsion of prismatic bars made of an elastic material is generally 
complicated and cannot be dealt with in a closed form. Here exceptional cases - partly known, 
partly new ones are treated, where the stress function of the problem can be obtained in a 
closed form, being in this respect different from the general case. 

Introduction 

The stress function of pure torsion of prismatic bars of elastic material
as a rule - cannot be set up in a closed form. Thus, the exceptional cases should 
be of interest, where the stress function of pure torsion can be expressed in a 
closed form, in contrast to the general case. In the following - without any 
pretention of being complete - cases of this type are dealt with. Some of them 
are to be found in the special technical literature, others have not been 
published, yet. 

In the following only symmetrical bar cross sections are dealt with. In 
certain cases, besides the form reduced to zero, stress functions in shapes 
directly suitable for calculation are also dealt with. In some figures besides the 
boundary line of the cross section, two stress lines are also indicated. The zero 
reduced equations of these stress lines only differ from the zero reduced 
equations of the stress function in additive constants K 1 and K2 respectively. 

The stress functions to be mentioned in the following can also be applied 
to hollow cross sections bordered either by two internal stress lines, or by the 
external rim and an internal stress line, or by the internal rim and an external 
stress line. 

The author entered into direct relation with Professor A. G. Pattantyus 50 years ago in 
connection with one of his papers dealing with the problem of torsion. Remembering it, he 
renders homage to his respected memory, with a study about torsion. 

14 P.P.M. 29/1-3 



210 P. CSONKA 

Cross sections bordered by an ellipse 

Stress functions of cross sections belonging to this group [2] are in 
rectangular coordinate system 0 (x, y) of form 

a 2 

x 2 + _ y2 a2 = 0 , 
b2 

where a and b are the main radiuses of the ellipse (Fig. 1). The stress lines are 
also ellipses, similar to the external boundary curve of the cross section and are 
proportional to it. 

In case of a = b the elliptical cross section degenerates into a circular one. 

f 
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Fig. I. Cross section bordered by an ellipse (K I =O.555a2
, K2 =O.889a2) 

Cross sections bordered by two confocal ellipses 

The hollow cross sections bordered by two ellipses having common 
focuses belong to this group. Their stress functions in an elliptic coordinate 
system 0 (~, rJ) [4] takes the form 

cosh (~o + ~ 1 - 2~) 
h (~ ~) cos 2rJ-cosh 2~1 =0. cos 1 - 0 

cosh 2~ + cos 2Yf 

In this formula ~, rJ are running coordinates (0 ~ ~ < 00, 0 < I Yf I < n12) and ~ 1 is 
the coordinate of the external ellipse and ~o is the coordinate of the internal 
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ellipse. The relation of coordinates ~, 'I to coordinates x, y are expressed by 
formulas 

x=c cosh ~ cos 'I, y = c sinh ~ sin 'I 

where c means the distance of the focuses measured from the origin 0 of the 
coordinate system. 

~ c --1-- c --l 

Fig. 2. Cross section bordered by two confocal ellipses (~1 =0.805, ~o=0.434) 

f--- c --1--- c ---1 

Fig. 3. Cross section bordered by an ellipse split between the focuses (~I =0.805, ~o=O) 

The form of the cross section depends on values ~ 0 and ~ 1 . 

Case 1: ~ 0> O. An example of these cross sections is shown in Fig. 2. 
Case 2: ~ 0 = O. In this case the cross section is an ellipse being split 

between the focuses (Fig. 3). 

14* 
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Cross sections bordered by a circular arc 
and a clover arc 

To this group special cross sections belong, the stress function of which 
written in a polar coordinate system 0 (r, qJ) reads as 

or 
1 11 

qJ = ± - arc cos C 2n n 2' 
11 ro r 

In these formulas 11 means a positive integer and C means a constant. 
The given stress function can be considered as a product of two factors: 

(r2 -r6) 1- C ----;;-::? 1 + ~ + ~ + ... + ~n cos IlqJ =0. [ 
r - 2 ( r2 r4 r2n) ] 

nro - r r r 

Making these two factors one by one equal to zero, equations of two curves 
are obtained. One of them is a circle of radius ro, the other one is a clover curve 
with n leaves, that in case of 11 = 1 degenerates into a circle passing through 

Fig. 4. Cross section bordered by two circular arcs 

point O. The clover curve can be situated in different ways in relation to the 
circle of radius ro. If it intersects the circle of radius ro then this circle, together 
with the clover curve, can form the external or internal boundary line of the 
cross section. 

Very different cross sections correspond to the stress functions in 
question. These were dealt with in detail in an earlier study [7J, so here only the 
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case shown in Fig. 4 is mentioned. In this case n = 1, C = 1 and the cross section 
is bordered by two circular arcs: a circular arc of radius ro and a clover arc, 
degenerated into a circular arc of radius rI' passing through the centre of the 
circle of radius ro. 

Cross sections bordered by a straight line 
and a hyperbola 

In this group cross sections are to be found, the stress function of which 
can be expressed by the formula 

(x-a) (x 2 _3y2 +4ax+4a2 -c2 )=O 
where a>O, c~O. 

Regarding the form of the cross sections two cases can be distinguished. 

~c~ 
I· 20--+-- 0-1 

Fig. 5. Cross section bordered by a straight line and a hyperbola arc (c = 1.5a) 

Case 1: 0 < c < 3a. In this case (Fig. 5) the cross section is bordered by the 
straight line x=a and by the hyperbola arc defined by formula 

x2 - 3 y2 + 4ax + 4a2 
- c2 = O. 
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Case 2: c = O. In this case the hyperbola arc degenerates into a pair of 
straight lines. This time the cross section is an equilateral triangle, at the same 
time being a star triangle (Fig. 6). The length of its side is .j3a, the radius of the 
circumscribed circle is R = 2a. 

T 

Fig. 6. Cross section bordered by an equilateral triangle (star triangle) (K 1 = 2.370a3
, 

K 2 = 3.630a3
) 

Cross sections bordered by two hyperbolas 

Cross sections with stress function of shape 

belong to this group where A and B are constants. Making the two factors of 
this equation equal to zero one by one, the equations of the boundary lines of 
the cross section are obtained. These boundary lines are hyperbolas, the 
asymptotes of which sustain an angle of 22.5° with axes x, y. 

According to the values of constants A and B different cases can be 
distinguished. 
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Case 1: A = - a2
, B = - b2

. In this case the real main radius of one of the 
hyperbolas bordering the cross section is a, its imaginary main radius is 

(j2 + l)a, and the real main radius of the other hyperbola bordering the cross 
section is b, its imaginary radius is (j2 -l)b. An example of this type of cross 
sections is given in Fig. 7. 

Fig. 7. Concave cross section bordered by two hyperbolas 

Case 2: A = B = - a2
. In this case the cross section is a star square (Fig. 8). 

The radius of the circle describing it is a = 0.466R. 
Case 3: A = _a2

, B=O. In this case the cross section is divided into two 
half parts connected to each other (Fig. 9). The half cross sections are bordered 
by a pair of straight lines and by a hyperbola arc. The real main radius of the 

hyperbola is a and its imaginary main radius is (j2 + 1) a. 
Case 4: A = _a2, B=(j2-1)2 ai. In this case the cross section consists of 

two half parts having no connection with each other (Fig. 10). The half cross 
sections are bordered by a convex and a concave hyperbola arc. The real main 

radius of the concave arc is a, its imaginary main radius is (j2+ 1)/a, and the 
real main radius of the convex arc is a, its imaginary main radius is (j2 -1) al' 
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Fig. 8. Cross section bordered by a star square (K 1 =O.299a2, K2 =0.435a2) 

r- Q ----t--- Q ~ 

Fig. 9. Half cross sections bordered by a pair of straight lines and a hyperbola arc 
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Fig. 10. Cross section bordered by a concave and a convex hyperbola arc 

Cross sections bordered by a star polygon 

These cross sections are multiple-symmetrical. Their stress function in 
a polar coordinate system 0 (r, <p) takes the form 

r2 2 rn n-2 
- + - -cosn<p- -- =0, 
R2 n Rn n 

or 

1 [n Rn (n-2 r2)] <p = ± - arc cos - - -- - - . 
n 2 rn n R2 

In the above formulas n is the number cif the sides of the star polygon (n = 3,4, 
5, ... ), and R is the radius of the circle described around the star polygon [8]. 

Among the n sided star polygons here only the 3-, 4-, 5- and 6-sided star 
polygons are dealt with. 

Case 1: n = 3. The cross section is a star triangle i.e. a regular triangle 
bordered by three straight lines. The boundary line and two stress lines of the 
cross section are to be seen in Figure 6. 

Case 2: n 4. The cross section is a star square. It is bordered by two 
branches of two hyperbolas. The form of the cross section and its two stress 
lines are shown in Figure 8. 

15 P.P.M. 29/1-3 
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Case 3: n = 5. The cross section is a star pentagon. Its form and two of its 
stress lines are to be seen in Fig. 11. 

Case 4: n = 6. The cross section is a star hexagon. Its form and two of its 
stress lines are shown in Fig. 12. 

t--\.r----- R ---.....r-o-- 0.722 R ---1 

Fig. jl ~ross section bordered by a star pentagon (K I = 0.358, K 2 = 0.542) 

The differential equation and its boundary conditions are the same for 
the stress function of pure torsion and for paraboloid shells of revolution 
subjected to uniformly distributed loads. Thus, the former expressions can 
also be applied to solve the problem of star shells. 



or 
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t--0.772R ---l 
Fig. 12. Cross section bordered by a star hexagon (K 1 = 0.600. K 2 = 0.396) 

Cross sections bordered by two parallel straights 
and two curve lines 

219 

Stress functions of cross sections belonging to this type take the form 

JTX JTV 
x 2 

- a2 + C cos -;:;- cosh? = 0 . 
ka _a 

2 a2 _x2 

V = + Arc cosh ---
• - JT JTX 

C cos 2a 

In the above formulas a means half of the distance between the two parallel 
lines and C is a positive number smaller than 4jJT. 

The form of the cross sections depending on the value of the ratio Cja 2 

can be very different. 

15* 
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Case 1: C = O.2a 2
. The form and two stress lines of the cross section are 

shown in Fig. 13. 
Case 2: C = 0.4a2

• The form and two stress lines of the cross section are to 
be seen in Fig. 14. 

Case 3: C = O.8a 2
• The form and two stress lines of the cross section are 

shown in Fig. 15. 
Case 4: C= l.02a2

• The cross section is articulated into two half cross 
sections being connected to each other (Fig. 16). 

Case 5: C ~ 1.03a2
• The cross section consists of two half parts having no 

connection to each other (Fig. 17). The half cross sections are bordered by one 
straight line and two curved lines. 
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1----- a --t--- a ---;'0011 

Fig. 17 
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