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Summary 

Distortions of the spectrum of stochastic road profiles are investigated in such situations, 
when the distance as integral of a random velocity process is also random. Explicit results 
are obtained for the simplest Markovian model of urban traffic; the kernel function of the integral 
operator defined by this transformation or-spectral densities is found to be a rational function of 
frequencies. 

Introduction 

Vibrations caused by unevenness of the road have an essential influence 
on life time of vehicles. In a simplified treatement the problem is formulated in 
terms of the process Yf = Yf(s) of road profile, i.e. Yf denotes the level of the road as 
a function of distance s. Analysis of vibrations of vehicles designed for public 
traffic is usually based on the assumption that Yf is a stationary stochastic 
process, let f = f(f.l.) denote the sp~ctral density of Yf as a function ofthe circular 
frequency f.l.. In the case of vehicles travelling with a constant velocity v, the 
calculation of stresses should be based on the effective spectral density ! (f.l.) 

= ~ f ( ~ ) , see [1, 2]. In the case of urban traffic, however, velocity of vehicles 

should be considered as a stationary process ~(t), and the effective energy 
spectrum turns out to be the spectral density of the composed process if(t) 

I 

= Yf«(t)), where W) = ! ~(x)dx. The spectral density 1 of if can be calculated 

by means of formulae (3), (4) and (5), see [3, 4]. Since f can experimentally be 
determined, the main problem is to find! as an integral transform! = Kf of 
f. In this paper we introduce and investigate a Markovian model of ~(t) with 
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two possible values of the velocity. Our main result is the formula 

(1) 

-Cl} 

see Theorem 1, 2, where v is the mean velocity of our vehicle, and p 
characterizes the relative fluctuations of the velocity process. Of course, (1) can 
be applied only if the undelying model of the velocity process ~(t) fits well to the 
given problem. We are going to 'consider such a model that the vehicle moves 
with velocity V t or v2 , and the average length of the corresponding consecutive 

intervals is ~ for both velocities. The assumption that the velocity takes on only 
I. 

two values may be realistic in the following two situations. In long-distance 
transport we have e.g. V t = 80 km/h on the highway, while V2 = 60 km/h inside 
villages. In public transport in cities the typical velocity is e.g. v t = 40 km/h, but 
we have V2 = 0 during the stay of the bus at stops. The model is given by a 
sequence of random times 0 < r 1< r 2 < ... < rn < ... when the vehicle 
changes its velocity from V t to V2 or from V2 to V t ; ). should experimentally be 
determined. In this model periods of breaking and accelerating the vehicle are 
neglected. If V2 = 0 then the associated intervals correspond to stops. This case 
applies to urban traffic, provided that the vehicle has to wait in stops in the 
average as long as it travels between consecutive stops (see Figs 1, 2). 

In this case the effective spectrum reads as follows: 

Cl} 1 r (x) I. 2d - - -x x 
- 1 f VI' VI 2 

J (p) = :; J12(p- xf +). 2(2J1- X)2 . 
(2) 

-Cl} 

Mathematical formulation and discussion of the model suppose that 1] 
I 

and ~ are completely independent stationary processes, and let ((t) = ! ~(x)dx. 
Then the composed process Ij(t) = 1](((t)) is again a stationary process, see [3]. 
Let J and f denote the spectral density of 11 and of Ij, respectively, then f 
'" KJ with an integral operator K, i.e. 

Cl} 

f (p) = S k(J1, z)J(z)dz, (3) 
-Cl} 

where 
Cl} 

k(J1, z) = Re ~ f E(exp iz((t) exp ( - iJ1t)dt, (4) 
o 
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! 

((t) = S ~(x)dx, 
o 

(5) 

where E denotes expectation, while i 2 = - 1, see [3]. 
Let us remark that (4) holds under some natural integrability conditions 
on the correlation function of 1], see Theorem 3 in [4J, K is defined on 
L 1 ( - co, co). 

BO km/h ------- ~ r. ---------

60 km/h L_ 

1 
X 

Fig. I 

LO km/h 

o km/h 

1 

J: 
Fig. 2 

The kernel k of our transformation will be calculated in the following 
case. Let D1 , D2, ... , Dn, ••• be a sequence of independent exponentially 
distributed random variables of common parameter A. > 0, then '1 = D 1 , 

'2=D 1 +b2, ... , 'n=b 1 + ... +bn, ... are points of a stationary Poisson 
process of intensity A.. Now we put 

~(t)= ~(O), if t E [r2n, '2n+ d, 
~(t)= ~(O), if t E [, 2n + l' r 2n + 2)' 

~(O) = {VI' 
if ~(0)=V2 

V2' if ~(O)=Vl' 
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where !o=O, n=l, 2, : .. , 0::;V2<V t and 

P(~(0)=Vt)=P(~(0)=V2)= ~ . (6) 

It is easy to see that ~ is a stationary Markov process with transition 
probabilities 

Since 

P(~(t + s)= Vt I ~(t)= Vt) = (ch().s)) exp ( - I.S), 

P(~(t + s) = V 2 I ~(t) = v2 ) = (ch().s)) exp ( - I,S) 

P(~(t+s)= Vt I ~(t)=v2)=(sh(;.s))exp( -).s), 

P(~(t + s) = V2 I ~(t)= Vt) = (sh().s)) exp ( - I.S). 

E(exp iz((t» = E(E(exp iz((t) I ~(O))) = 

= ; E(exp iz((t) I ~(O)=Vt)+ ~ E(exp iz((t) I ~(0)=V2)' 
introducing 

t 

W t (t, z) = E(exp iz S ~(x)dx I ~(O) = Vj), 
o 
t 

w2(t, z)= E(exp iz S ~(x)dx I ~(0)=V2)' 
we obtain that o 

::J) 

k(J1, z) = Re 2
1
n f (wdt, z) + W 2 (t, z» exp ( - iJ1t)dt. 

o 

(7) 

(8) 

(9) 

In view of the following theorem, calculation of the kernel function (9) 
reduces to solution of the following system of linear differential equations. 

Theorem 1. For W t and W 2 defined by (8) we have 

[~t] = [-I,-:iZV t I,.] [wt] 
W 2 ). -1,-ZZV2 W 2 

(10) 

with initial condition W t (0, z) = W2(0, z) = 1. 

Proof: Introduce 
t 

aCt, u, v) = E«(exp iz ! ~(x)dx)t5(v, ~(t)) I ~(O) = u), 

c5(v,~(t»={l' !f ~(t)=v 
0, If ~(t) =1= v, 

(11 ) 

t 

[3(t, u) = E(exp iz ! ~(X)dA i ~(O) = u), 
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since ~ is a Markov process, an easy calculation shows that 

[3(t + s, u) = L et(s, u, y)[3(t, y). (12) 
y 

We shall see that et and [3 are differentiable functions of t. It is plain that 

wdt, z)=[3(t, Vi)' W2(t, z)=[3(t, v2) (13) 

thus differentiating both sides of (12) with respect to s we obtain that 

:s [3(t + s, U)i s= 0 = ~ :s et(s, u, y)i s= 0 [3(t, y). (14) 

However 

did -d [3(t+s,u) =-d [3(t,u) 
s s=o t 

(15) 

thus in view of(13), (14) and (15) it is sufficient to determine the derivative of et at 
s=O. We obtain 

Since 

and 

d
d et(S,U,y)i = lim!(et(s,u,y)-et(O,u,y»= 
s s=o s ..... os 

= lim! E«exp iz(S»b(~(S), y)- b(~(O), y) I ~(O) = u) = 
s ..... o S 

= lim! E«exp iZ(S»b(~(S), y)- b(~(S), y) I ~(O) = u) + 
s-+o S 

+ lim! E(b(~(s), y)-b(~(O), y) I ~(O)=u)= Ai + A2 
s-+o S 

Ai = lim E(b(~(S), y) (exp iz(s)-exp iZO)! I ~(O)=u)= 
s ..... o s 

s 

= E(b(~(S), y)(iz~(s) exp iz ! ~(x)dx)s=o I ~(O)= u) = 

= E(b(~(O), y)iz~(O) I ~(O)= u) = 
_ 5.:( ). _ {iZY, if u=y 
- u u, Y IZU - 0 'f 

, 1 u:;fy. 

E(b(~(S), y) I ~(O)=u)=P(~(s)= Y I ~(O)=u)= 

{
(ch As)exp( -As), if U= y 

= (sh is)exp( -As), if u:;f y, 

{
1, if U=y 

E(b(~(O), y) I ~(O)=u)= 0 'f -J. 
, 1 U -r y, 

(16) 

(17) 
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consequently 

whence 

.4. BELLA r 

ds (ch(As)exp( -).5))s=o, 

{ 

d 

:s (sh (),s)exp (- ),s))s=o, 

A 2 = { - ),' if u = y 
A, if u:;i: y. 

if u=y 

if u:;i: y, 

Substituting (18) and (17) into (16) we obtain 

d {-},+iZY, if u=y 
dscx(s,u,y)s=o= ),' if u:;i:y. 

(18) 

(19) 

Comparing (19) and (14) it can be see that cx and {3 are really differentiable 
functions, furthermore, by means of (15) it can be concluded that 

d 
dt {3(t, v1) = ( -), + izv 1){3(t, v1) + ),{3(t, V2)' 

d . 
dt {3(t, v2) = ( - A + 1ZV2){3(t, v2) + ),{3(t, vd· 

Finally, as (11) implies 

{3(0,v 1)=1 and 

(20) 

(21) 

the statement of the lheorem follows in view of notations introduced in (13). 

Theorem 2. For the model defined above we have (1) with v = ~ (Vl + v2) 

V -V2 and p= _1 __ . 

v1 +V2 

Proof: Theorem 1 implies 
A + ivpz + Jr-A-=-2 _-V-=-2 p-:2=-Z=2 

(01 (t, z)= exp K1 t 
2JA2-V2p2Z2 

-A-ivpz+J A2_V2p2Z2 
+ 2J12 2 2 2 expK2t, 

I\. -v p Z 
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Kl = -;,+iVZ+J;,2_V2p2Z2, 

K2 = -;,+ ivz-J ;,2 - V2p2Z2. 

Thus an easy calculation shows that 

1 f . k(j1, z) = 2n Re (Wl (t, z) + W2 (t, z)) exp ( -1j1t)dt = 

o 

1 -4},-2i(j1-vz) 
= - Re ----;;---,;--~-~-:----:-

2n (j1- VZ)2 - v2 p2Z2 - i2}.(j1- vz) 

2}.v2 p2Z2 

= -; ((j1_ VZ)2 - v2 p2Z2)2 + 4), 2(j1_ VZ)2 

whence (1) follows by (3); while (2) is obtained as a particular case of (1). 
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