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Summary 

The basic equation of solid bodies experiencing minor deformation can be written after 
the constitutive equation has been determined. This study outlines a new theory of determining 
the constitutive equations, permitting new experimental methods to be set up on this basis. 

Basic equations are needed for the mechanical tests of solid bodies in 
motion. The formulation of the basic equations is a problem having a bearing 
upon the fundamentals of mechanics; in the knowledge of the basic equations 
and under appropriate supplementary conditions, the problem of determining 
the motion of the body can be mathematically formulated. In this way, the 
starting equation system of the mechanical test is obtained. 

In case of any medium (body) considered to be continuum, the basic 
equations are, as follows: kinematic or geometric equation, equation of mass 
balance, equation of motion, constitutive equations, and other equations 
expressing physical effects [3]. In investigating the motion of a body, this study 
takes only the mechanical interactions into consideration; thus, the basic 
equations are constituted by the first four groups of equations specified. From 
among the equations considered, the formulation of the constitutive equations 
can not be considered final in the investigation of, among others, solid bodies, 
especially of those in motion. This is not only due to the fact that bodies of 
different material can be described by a constitutive equation of different 
intrinsic properties each but also to the fact that the experiment, and the 
variables to be observed during the experiment, by means of which the required 
constitutive equation can be determined, are unknown [lJ, [2]. Experimental 
tests are required to determine the constitutive equation for given material. 
Theoretical considerations that can be followed also by measurements shall be 
taken as a basis for the experiment. Constitutive equations that can be taken 
into consideration on the basis of the theoretical consideration are the possible 
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constitutive equations. First of all, a theory giving information on the structure 
of the possible constitutive equation shall be set up. In this way, the necessary 
experiment can be decided and the law applying to given material can be 
selected from the possible constitutive equation. 

In the knowledge of the constitutive equation, we have a complete 
equation system for given plastic body. Two known groups of this equation 
system in the Cartesian co-ordinate system are the kinematic equation: 

and the equation of motion: 

8Vi 8(Jij 
P -;;;-t = -" - + qi' o oXj 

the quantities in the equations being the strain tensor, velocity, density, stress 
tensor, body force, and the time and space co-ordinates. 

Indicated in the known equations specified so far are the first partial 
derivatives of the strain tensor and stress tensor. The same quantities and basic 
functions are included in the other six equations. This restriction shall 
reasonably be completed with the constraint that the body can be inhomog­
eneous or rheonomous, that is co-ordinate quad Xi also appears explicitly in 
the constitutive equations (Xl' X 2 , X3 being space co-ordinates while X4 == t time 
co-ordinate). 

Let the constitutive equation be function system 

a = 1, 2, . . ., 6 . 

Certain requirements can be imposed upon constitutive equations Fa. unknown 
for the time being, such as: 

(a) Function Fa. is a function of co-ordinates Xi> time x4 == t, basic 
functions Bij and (Jij, and of their first partial derivatives. 

(b) In spite of any mechanically possible initial conditions, acceleration 
wave can be induced in the body, propagating at finite speed. 

(c) There exist both progressive and return acceleration waves. 
(d) F(% is a continuously differentiable function of its variables. 
Now, by introducing function a(ij) in subscript and giving partial 

derivation also in subscript: 

2B (") 4=V, '+V' . IX 'J • '.) )., 

PVi. 4 = (J1X(ij).j+ qi 

Fa.((JPi,Byj,(Js,Bo,X()=O 

(1) 

(2) 

(3) 
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where (J Pi = ~(J P and Cij = ~Ci in function Fez are abbreviations and the Greek 
OX i OXj 

letters are again subscript functions, e.g. (Jp = (J P(ij) i, j = 1, 2, 3; f3 = 1, 2, ... , 6. 
The setup of (3) meets the requirements specified under (a) and (d). 

Because of invariance as against Galilean transformation, a requirement the 
constitutive equations must by all means meet, Fez can not contain Vi while in 
accordance with equations (1) and (2), its derivatives are included in cez,4 and/or 
(Jez,4' Associated with equation system (1), (2), (3) are furthermore supplemen­
tary conditions as well as initial and boundary conditions. 

The kinematical and dynamical compatibility condition to meet 
requirement (b) is known (see e.g. [7J). An additional compatibility condition 
comes from (3). Let the wave function be ip(xi ) with 0-Pi' B{j' 0-a. and Ba being 
given before the wave front. The same quantities after the wave front are (J Pi' 

c{j' (J a. and co' There is a relationship of 

(JPi =o-Pi + J1p ipi 

Cyj =B,j +K,ipj 

between both groups of quantities. 

(4) 

Making use of these, the mass compatibility condition of the acceleration 
wave can be written as 

(5) 

After utilizing (4), this difference function shall be designated fez, that is 

where P,,- is a value to substitute for Fez for values distinguished by zero above 
them. 

Thus, the mass compatibility condition: 

h=O. (6) 

h is a function of quantities distinguished by zero above them while Xi that of 
Dip 

Kp, Ky and ipi = -~ -. 
oXi 

Let h = 0 be a first-order partial non-linear differential equation for ip 

with all the other functions in it known. Solution to this equation will be the 
same function ip if h constitutes an involutory function system [4J, [8J, [6J, 

2* 
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[9]. A function system will be involutory if the Poisson bracket is zero. The 
Poisson bracket is given by the following expression: 

Ut, i{J)= oia oi{J _ oia oi{J . 
o((Jp oXp oXp o((Jp 

(to be integrated according to subscript p). 
A necessary and satisfactory condition for the existence of the 

acceleration wave [4J, [6J, [9]: 

(ia, i{J)=O. 

In other words, function system Fa-Fa resulting from the constitutive 
equation constitutes an involutory function system. Thus, the requirement 
specified under (b) is partially met. Some designations have to be introduced to 
write the Poisson bracket in detail, such as 

(7) 

and 

Similarly, the quantities with zero above them can be introduced as well: 

With these 

and 

,l\ __ oirr. _ oFa 0 oia oFa 
;)a{Jp - 0 0 -"' 0 Eayj = - -;:;-;-- = -00 

cr {Jp ocr {Jp Oeyj e'lj (8) 

o oia oFa 0 oia oFa 
Srr.S= - oas = oas ' eao = - 08

0 
= 08

0 

aia (S ) -0 = a{Ji ll{Jp + E'Ii K'IP ((Ji + 
xp 

+ (Saslls + eaoKo) ((Jp + (Srr.{Ji - Sa{J;) a {Jip + 
+ (Err.{j - Err.'Ij) 8'1j p + (SaS - Srr.s) aSp + 
+ (eao - err.o) 80p + i2P . 
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For the sake of further abbreviation before the Poisson bracket is written, let 

and (9) 

finally 
Nap = (SaPi -SaP;) GpiP + (Eay] -Eay]) By]p + 

+ (Sa9- 8a9) G9p + (ea,;-e",,;) Byp + fap 

Now the Poisson bracket is equally zero, in particular: 

(fa, it}.)) = Map [(SwPi Jlpp + Ew,;; K,;p) ({Ji + mwcpp + N wp J-
- M wp [(SaPi Jlpp + Ea,;; K,;p) CPi + ma ({Jp + N wp J == 0 . (10) 

After utilizing (4), ({J or ({Ji are not ranging among the variables of matrices 
Map. Swp;, E wiii , mw and N ~P' that means they can be calculated from Fa and/or 
Fa on the basis of (7) and (8), respectively. 

Before (10) is further analyzed, the projective equation system falling 
within the basic range of the characteristics of one of differential equations la. 
=0 is worth writing. This, according to [6J, [9J, can be written as 

that is, since dX4 == dt, 

dxp dX4 
of" = afa 

a({J!!.o a({J4 

ex and p can be chosen optionally. With the derivatives of la. designated as in the 
first equality of (9): 

dxp 
M~4dt =Mv or dx p = Map 

dt M~4 

It is easy to accept that a substitution Ofd~p into ({Jp ~p + ({J4 = 0 and the 

introduction of normal unit vector np= & of the wave front will yield 
({JkCPk 
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After reduction we obtain 

M~fiCfJfi =0, 

or in detail with the first equality of (9): 

SCLPfi Pp + E~fpKf = 0 . 

CfJ4 
Finally, taking into consideration also formula c = - and the 

J CfJkCfJk 

definition of np we obtain: 

(2p S~P4C3 - 2pS~ppnpc2 + ECLy4nypC - E~ppn,pnp) Pp = 0 (11) 

and in case Pp =1= 0 we obtain the equation of wave propagation where c is the 
velocity of wave propagation. 

Pp =1= 0 may occur if 

det (2p SCLP4C3 - 2p S~ppnpc2 + EIZy4 n,pc - ElZ"ipn,pnp) = 0, (12) 

that is if the wave velocity equation is satisfied. 
The acceleration wave surface is the characteristic surface of equation 

system (1), (2) and (3) [9J, [1OJ, [12]. 
The matrix of nap in (11) and (12): 

2ni 0 0 2n 1n2 2n 1n3 0 

0 2n~ 0 2n 1n2 0 2n2n3 

0 0 2n~ 0 2n 1n3 2n 2 n3 
(nap)= 

0 ni +11~ n l 11 2 n1n2 112113 111 n3 

11 1n3 0 n1n3 112113 112+112 1 3 n l 112 

0 n2n3 n2113 11 1n3 111112 n~+n~ 

Thus Pp substitutes for Kj" namely 

2pc2 Ka: = nCLppp , 

(11) is the general formula of the wave propagation equation and an 
investigation of the equation is usually considered. This investigation shall 
reasonably be carried out in a possibly most generalized way. Equation (11): 
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General wave amplitude of the stress derivative will differ from zero if 
wave velocity equation 

det (2p S'J.P4C3 - 2p Sappnpc2 + Eay4n'lpc - E'J.ypnypnp) = ° (13) 

is satisfied. For c, this equation is ofa 18th-order equation. From among the 18 
roots, at least one shall be a real positive while another a real negative root in 
compliance with requirements (b) and (c). Should all the roots in (13) be real 
roots, then equation system (1), (2) and (3) will be a whole hyperbolic partial 
differential equation [12]. 

Assuming that c and the associated J.l'J. are known, an expression quadratic 
in J.l shall reasonably assigned to (11) by multiplying (11) by J.la' The following 
designation can be introduced to abbreviate the expression: 

SI = 2p S'J.P4J.la.J.lP= 2pS(aP)4J.laJ.lp 

S2= -2p Sa.ppnpJ.laJ.lp= -2pS(a.PlpnpJ.laJ.lp 

El = E'J.y4 nyP J.laJ.lp = E(aypnpnyp)J.lrzJ.lp 

E2 = - E"'lpnpnypJ.laJ.lp = - E(a.ypnpnYPlJ.laJ.lp· 

(14) 

In the zero case of the quadratic form assigned to (11), c associated with 
J.l,,, according to the above assumption, satisfies equation 

(15) 

S(a.Pl4 in (14) means the symmetric part of Sa.P4' J.laJ.lp=J.lpJ.lrz is a symmetrical 
6 x 6 matrix the twice contracted product of which after multiplication by an 
obliquely symmetrical matrix yielding zero. 

The roots in (15) are real roots with both positive and negative roots 
ranging among them. This can be checked by means of the Sturm sequence. 

For (15), the Sturm sequence is, as follows: 

SI c3 +S2C2 + El c+ E2, 3S1 c2 +2S2c+ El' 

2 S~-3S1E1 S2 E l- 9S1E2 
3S1 c+ 3S1 

and 

SI S~Ei + 18SiS2E1 E2 -4S1S~E2 +si Ei -27Si E~ _ 
S2-3S E2 =r2 

2 1 1 

The signs of the sequence are sign SI' sign SI' sign (S~ - 3S 1 El) and 
sign r2 for 00, sign E2, sign El' sign (S2E1 -9S1E2) and sign r2 for 0, and, 
finally, sign ( - S d, sign SI' sign (3S 1 El - S~) and sign r2 for - 00. 
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As is well known, if the number of sign reversals is Voc, for 00 and Vo for 0, 
then the number of positive roots will be Vo - Voc" the number of negative root 
V_ oc, - Vo while the number of real roots V_ oc, - Voc,. 

It is possible to assume if all the roots of (15) are real, without limiting 
generality, that S 1 > 0, and that the term of the sequence has the same sign r 2 for 
00,0, and 00 uniquely. Taking into consideration the fact that if the value of 
Voc, is other than zero, then there will be no three real roots in (15) and sign r 2 = 
+ 1 that is 

S~Ei + 18S1 S2 El E2 4S~E2 + Sl E~ -27SiE~ > 0 (16) 

Possible cases: 

Cr:d Sl>O, S2#0, El <0, E2>0 

2 positive roots, 1 negative root 

Cr: 2) Sl >0, S2 #0, El <0, E2 <0 

1 positive root, 2 negative roots 

Cr: 3 ) Sl>O, S2>0, E1>0, E2>0, S~>3S1E1 

2 positive roots, 1 negative root 

Cr:4 ) Sl>O, S2>0, E1>0, E2<0 and S~>3S1E1 

2 positive roots, 1 negative root. 

With the investigation presented carried out also in case S 2 = 0 in (16), two 
addit· Dnal cases are worthy of consideration, such as 

{3 d S 1 > 0, S 2 = 0, El < 0, E 2 > 0 

2 positive roots, 1 negative root 

{32) 51 >0, S2 =0, El <0, E2 <0 

1 positive root, 2 negative roots. 

Additional cases are also 

y d SI> 0, S 2 # 0, El < 0, E 2 = 0 

1 positive root, 1 zero root, 1 negative root 

Y2) SI >0, S2 =0, El <0, E2 =0 

1 positive root, 1 zero root, 1 negative root. 
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On the basis of cases (x, f3 and y specified above, we may say on the bracketed 
matrices of equation (11) that S(a:Pl4 is positive definite in every case. In cases 
(Xl)' (X2)' S(IlPlP=np is indefinite but Sa:ppnp/la./lp can never be zero once /lp has 
been realized. According to (X3)' S(a.Plpnp is a positive definite and according to 
(X4) negative definite while Sllppnp=O according to f3d, f32)' This latter shall 
reasonably be understood as 

oFrz =0 
oa pp . 

E(czy4nYPl can be definite and semi-definite because ofn yp . Neither Ea.y4nyp/la./lp 
norErzypnpnyp/lrz/lp can equal zero in the second case either. E(a:y4nYPl is positive 
definite or semi-definite in cases (X2) and (X4)' respectively while negative definite 
or semi-definite in other cases. In case of (Xd, (X3) and f3l)' E(CZypnpllYPl is negative 

definite or negative semi-definite, respectively. ~Frz =0 in case Ohl) and Y2)' 
oeyp 

while positive definite or semi-definite in other cases. 
Inequality (16) and the inequalities in (X3) and (X4) can be checked and/or 

realized in the actual case of /lp. 
In a special case, these results resemble the so-called strictly elliptical 

behaviour specified for the acoustic tensor in [11]. 
What has been said in relation with equation (15) can be understood as a 

generalization of the results obtained in [3]. On the basis thereof, the 
coefficients offormula (11) in [3J comply with the coefficients of equation (15) in 
the following way: 

S 1·· h ocf> 
1 comp les Wit p -0 ' 

at 

1· . h ocf> d El comp les wit -,,- an 
Oet 

ocf> 
S2 with -p­oax ' 

On the basis of this similarity, it can be quite obviously assumed that the 
setup of (15) complies with equation (11) obtained in the experimental test of 
acceleration wave in a strip. Let this assumption be designated e). Assumption 
e) suggests one possible way of experimental tests. 

Quadratic form (15) assigned to (11) suggests that the coefficient matrices 
of the powers of c in (11) are symmetric for sUbscripts (x, f3 and that the entire 
bracketed expression on the left side of(l1) is positive semi-definite. In this case, 
according to theorem 2.8.19 of [7J, this positive semi-definite expression will be 
zero if (11) is fulfilled. Hence, now the quadratic equation and the roots of (11) 
are in compliance. 
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