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Summary 

This paper deals with six plasticity theories by means of finite element method. These are 
the time-independent theory of Prandtl-Reuss, Hencky-Nadai, I1yushin and Valanis and the 
elasto-viscoplastic theory of Perzyna and Krempl. The stress-strain relation in the plasticity 
theories investigated is written uniformly in incremental form. 

The time-independent theories are compared by computing the deformation of a thin
walled tube subjected to combined tension-torsion. 

The two elasto-viscoplastic theories are applied to a thick-walled cylinder subjected to a 
pressurization rate of 1 Mpa/s. The hoop stress distribution is presented. 

Introduction 

Recently, calculations based on plasticity theory have found increasing 
use in the structural analysis calculations. Also, the increasing requirements 
imposed upon operation of the structural units of machinery demand that 
models more accurately describing the behaviour of material be used. Because 
of the rather sophisticated models, plasticity calculations can usually be made 
only by numerical methods. 

Among the different numerical methods, e.g. the finite element method 
offers a rather effective approach. This method permits actual practical 
calculations to be made and different plasticity theories to be compared. On the 
basis of numerical investigations and comparison with the measurement 
results, the applicability limits and deficiencies of the different theories can be 
determined. In this study, six plasticity theories are compared by means offinite 
element method. Among the theories investigated, the first four theories -
Prandtl-Reuss theory of plastic flow, Hencky-Nadai theory of deformation, 
Ilyushin theory of geometry and the Valanis theory - discuss time-
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independent elasto-plastic strains while the last two theories include the elasto
vis co plastic behaviour of materials elaborated by Perzyna and Krempl. 

A computer program [6J developed earlier is used in finite element 
calculations. 

Basic equations 

To comply with the finite element calculation, the stress-strain relation in 
the plasticity theories investigated is written in incremental form. This can be 
expressed for the six theories uniformly in the following way: 

Llaij= CijklLlckl- LlPij (1) 

For the four time-independent cases, LlPij=O and tensor C ijk1 can be written as 

C ijkl = a T;jkl + b L ijk1 + cM ijkl (2) 
where 

1 
T;jkl = I ijkl - "3 L ijk1 

The scalar parameters a, b, c for the different theories are tabulated in Table 1 
below: 

a b c 

Prandtl-Reuss 2G K ----
(J2(H+3G) 

2G 9G2(Hs-H) 
Hencky-Nadai K 

I +3G/Hs (J2(H + 3G) (H s + 3G) 
N-P 

Ilyushin N K 
SijSij 

(x, 

Valanis [2J 2G K 
I+P( 
Pd( sudEu 

A detailed discussion of the first three theories is given by Zyczkowski [1 J. 
The Mises yield condition has been used for the Prandtl-Reuss theory in 
Table I. The use of a more generalized plasticity condition is also possible: 

(3) 
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where 
N ijkl = I ijkl + A(Bp) . BfjBkl 

The yield function in (3) can describe anisotropic hardening [7]. In this 
case, M ijkl and c take the following form: 

Mijkl=dijdkl 

C= 2 (2 )1/2 
dpqapq + "3 H(l-w)apqapq-gpq' apq +h "3 apq ' apq 

In case of the Perzyna and Krempl theory equation (1) gives the stress 
increment in time interval Llt. Quantities Cijkl and LlPij will then change, as 
follows: 

For the Perzyna theory [3]: 

where 

Cijkl = (Dijk~ + e LltHukl)-1 

LlPij= LltCijklerr 

err=y<<p(F) ~F 
- 'vp 

H" OBij 
"kl=-
I) O(Jkl 

O(Jkl 

For the Krempl theory [4J: 

where 

Cijkl = (D;jk~ + e LltHfjmn)-1 (Imnkl- eLltH':nnkl) 

Ll P ij = (D ;j~n + eLl tHUmn) - 1 Ll te~n 

'in D- 1 (Jrs-Grs 
Bmn = mnrs k(r) 

g( <p) 
Grs = <pE DrsmnBmn 

""I -in 
H'!. = OBij 

I)mn O(Jmn 

(4a) 

(4b) 

(Sa) 
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e in equations (4) and (5) means the weight factor in time-step schemes based 
on the difference method which is used in integration by time: 

L1ei! = L1t[(1- eYei! + et+.dtel'J] (6) 

The following equation is used in finite element calculations: 

Where KL K~L 
U 
Rt+.dt 
p 
Vt 

(K~ +K~dL1u=Rt+.dt-Ft+ Vt (7) 

- linear and non-linear tangential stiffness matrix 
- nodal displacement increment vector 
- external load vector in the time t + L1t 
- internal load vector 
- pseudo-load vector. 

A solution to the above equation is given by the Newton-Raphson or by 
the modified Newton-Raphson method. The solution to two simple problems 
is presented to illustrate the application of the finite element program 
elaborated on the basis of the theories discussed in detail above. 

Examples 

Combined tension and torsion of thin-walled tube 

The first problem includes a thin-walled tube subjected to non
proportional load. The combined tensile-torsional load path is given in Fig. 1. 
Plane stress state has been assumed in finite element calculations, the finite 

A 
't 

B 

o c 6 
Fig. I. Loading path and finite element model for analysis of the thin-walIed tube 
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Fig. 2.a Axial stress-strain curves 
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Fig. 2.h Torsional stress-strain curves 
experiment, Liu [5] 

o anisotropic hardening [7] 
o 0 Okinematic hardening 

x x x Hencky-Nadai theory 
• • eValanis theory 
!:;, !:;, !:;, Ilyushin theory 
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Fig. 3. Finite element mesh for a thick-walled cylinder 
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Fig. 4. Hoop stress versus internal pressure at r/a = 1 and r/a = 2 ratios for a pressurization rate of 
1 MPa/s 

o 0 0 Perzyna theory 
o 0 0 Krempl theory 
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element model being shown in the upper right part of the Figure. Measure
ments for this load path were made by Liu [5]. The results of measurements 
and those obtained on the basis of the different theories are shown in Fig. 2, Fig. 
2.a and Fig. 2.b show the axial stress-strain curves and shear stress-strain 
curves, respectively. 

Solid lines indicate the results of measurements. It can be seen that best 
results are supplied by the anisotropic hardening model. Acceptable results are 
obtained on the basis of the Valanis theory, and Ilyushin theory too, however, 
the Hencky-Nadai theory and the kinematic hardening model yield rather 
divergent results as compared with the measurements. 

Elasto-viscoplastic strain of thick-walled tube 

The second problem is a comparison of the Perzyna theory and Krempl 
theory. Here the elasto-viscoplastic strain of a thick-walled tube is investigated, 
the load being applied to the tube for a pressurization rate p= 1 MPa/s. The 
axissymmetric finite element model is shown in Fig. 3. 

The results of calculations are given in Fig. 4. In the Figure, the change of 
tangential stress as a function of pressure can be seen for both the internal and 
external surface of the tube. 

(Jij 

eij 

sij 

eij 

efJ 
·vp 
eij , 

E 
v 
K 

-in 
eij 

G= E 
2(1 + v) 

bij 

Nomenclature 

- second Piola-Kirchhoff stress tensor 
- Green-Lagrange strain tensor 
- deviatoric stress tensor 
- deviatoric strain tensor 
- plastic strain tensor 
- viscoplastic strain rate tensor 
- elastic modulus 
- Poisson's ratio 
- bulk modulus 

- Kronecker delta 
1 

I ijkl = 2 (bikb jl + bi/bjd 

3 Periodica Po1ytechnica M. 28/2-3 
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D ijkl = 2G 'T;jkl + K . Lijkl 

(j == J~ SijSij - equivalent stress 

? 
lOp == ~ etJetJ - equivalent plastic strain 

(jy(e p) - hardening function 
H - plastic modulus 
Hs - plastic secant modulus 
Ct 1 , fi l' fi 2 - endochron material parameters 
(f3d()2 = 131 deiide jj + 13 2 deijdeij 

of 
a··=--

'J c(j .. 
'J 

F - yield function 

w - mixed hardening parameter 
dij=Dijklakl 
A(ep) - anisotrop hardening function 
y - fluidity parameter 

(cP(F» = {OcP(F) F>O 
F~O 

g(<p) - viscosity function 
k(T) - hardening function 
Ctij - translation tensor 
(Jij = (jij - Ctij 

N = !(eijei) 
p= f 
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