
APROXIMATIVE METHOD TO CALCULATE 
STRESS CONCENTRATIONS DUE TO LOCAL 

FORM DEFLECTION OF LARGE VESSELS 

L. KOCSIS 

Department of Technical Mechanics, 
Technical University, H-1521 Budapest 

Received September 20, 1983 
Presented by Prof. Dr. Gy. Beda 

Summary 

In the recent ten-year period, the rapid development of chemical industry has resulted in 
increasing use of large cylindric or spharical pressure vessels. The geometry of the finished vessels 
is in most cases other than ideal. 

In this paper, an approximate method of suitable accuracy for practical use, describing the 
stress-strain conditions of the deflected shell section in a local co-ordinate system fixed on the 
central surface of the ideal shell is presented. 

The results of investigations in the environment of a local indentation of a cylindric vessel 
are given to illustrate the applicability of the method. 

Introduction 

Large cylindric or spherical pressure vessels have been finding increasing 
use as a result of modernization of chemical industry and rapid development of 
technology. The vessels are set up of segments. Depending on the manufactur
ing technology and on technological discipline, the geometry of the finished 
vessel is more or less other than ideal. The deflections are of global or local 
nature. Experiences gained during construction and subsequent testing oflarge 
vessels suggest that local 'indentations' the steel plates of originally perfect 
geometry experience in the course of transportation are predominating. 

The question arises, especially in case of vessels with strained operating 
parameters, whether the deflection from the designed geometry might result in 
a stress increase that endangers the safe operation of the vessel. 

With the up-to-date methods of computer engineering available today
e.g. the method of finite element-the question can be easily answered. 
However, computations like these are relatively expensive, and the costs would 
certainly exceed the estimated costs of testing subsequent to construction, 
especially if deflections of different shape, size, and 'depth' are involved. 
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All what has been said above necessitates that a calculation method of 
suitable accuracy for practice be developed by means of which the stress-strain 
conditions in the environment of deflections can be determined at low costs, 
taking into consideration the capacity of small computers widely available 
today. 

Principle of the method 

The calculation method described here is adjusted to the ideal geometry 
of the vessel to be tested and to the measurement method to determine the 
formdeflection. The geometry of the built vessel is tested by determining the 
deflection from the surface of ideal geometry in points of appropriate number, 
using a measurement method best complying with the geometry of the vessel 
and with the required accuracy. 

Making use of the points of measurement, a regression or interpolation 
surface determining the so-called deflection function (h(x 1, x2)) is obtained. The 
deflection function describes the deviation from the surface of ideal geometry. 

Starting assumptions 

(a) Investigations relate to so-called thin shell. 
(b) The Kirchoff-Love hypothesis is accepted. 
(c) Small deformations are investigated. 
(d) Shape of displacement field: 

where 

(e) 0"33;:::;:0 

Ua = v",(xP) + x3e a(xP) 

U = w(xP) 

(l) The volumetric forces are negligible. 
(g) Internal gas or liquid pressure acts upon the shell. 
(h) Disturbance due to support of the vessel, pipe stubs, and other fittings does 

not affect the shell surface investigated. 
(i) Considering its material, the shell can be treated as a homogeneous, 

isotropic, linearly elastic body. Thus, Hooke's law can be applied as the 
mass law; 

(j) Thickness b of the shell is constant. 
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Let us investigate certain part of the central surface of the (deflected) shell, 
confined by a closed curve So (the geometrical boundary condition along curve 
So being given). 

Taking into consideration the starting assumptions, the total minimum 
potential energy theorem for the investigated shell surface can be written as 

where: 

and 

n(v",w)= S (N"PY"p+M"PK"p-f3w)dA (1) 
A 

N"P= ~ (Yoy+Yyo)h"PYO 

b3 

M "P - ( ..L )h"P,O - 24 K,o I KOY 

(2) 

(3) 

y"p=v"IIP-wb"p (4) 

K"p=e"IIP (5) 

Since we investigate the stress-strain conditions of a shell deflecting only 
locally from the surface of ideal geometry, it seems logical not to describe the 
characteristics of the deflected shell in a co-ordinate system associated with the 
actual central surface but, instead, in a co-ordinate system fixed on the central 
surface of the ideal shell. This is at the same time justified by the fact that also 
the deflection has been described in this system that is deflection function h(x") 
is already available. Hereinafter the characteristics of the co-ordinate system 
associated with the ideal central surface will be designated O. The symbols 
generally accepted in shell theory are used to describe quantities defined on the 
central surface and in arbitrary points of the shell investigated. 

Solution of the varation problem 

The Ritz method is used as a numerical solution to the problem. 
Accordingly, function series 

nl 

VI = Y 1 + L CPK dK 
k=l 

n2 

V2 =Y2 + L 
k=nl+l 

CPK dK (6) 

n3 

w=\j'+ L 
k =n2 + 1 

CPK dK 

is used to approximate the unknown function in functional (1). 
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Here Y 1 ; Y 2 ; \If; cpdk = 1 ... n 3 ) are known functions from among which 
Y 1 ; Y 2 and \If fulfil the gegometrical boundary conditions while the value of 
functions CPk at the geometrical boundaries amounts equally to zero, dk(k 
= 1 ... n3) being variation constants. Functions Y"fJ ' Ka.fJ and w in functional (1) 
can be written as 

n3 

" - "\'" d - Y '''fJ- L.. 1([)lJ.fJ ([) a.fJ 
([)= 1 0 

n3 

KlJ.fJ = L K([)7fJ d([) - "ia.fJ 
([)= 1 

n3 

W= L w([)d([)+wo 
([)= 1 

On the basis of (4) and (5), using (6) and (7) 

yafJ = \If bafJ + y,f~fJ - Y7fJ 

"iafJ = y)b:'fJ - blf~fJ)+ b/y"fJ -\If,yf~fJ + \If,!1.fJ 

In expression (7) 

(7) 

if O<i :::;n l 

if n l <i:::;n2 

ifn 2 <i:::;n 3 

ifO<i:::;n l 

if n l < i:::; n 2 

ifn2 <i:::;n3 

if 0 < i:::; n l 

ifn l <i:::;n 2 

if n2 <i :::;n3 

if O<i:::;n2 

if n 2 <i:::;n3 

Taking (7) into consideration, partial derivatives ~: can be calculated. 
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From condition ~ad7r = 0 of the existence of extremum, inhomogeneous' 
0 0 , 

linear equation system 

Ad=e 

is obtained for parameters d j • 

Elements of the matrix of the coefficients: 

A = f ~h<XPY';[(y +y ),' +(,' +" )" + o (J) 2 (J) y'; (J)';y r 0:r.P r 0i''; I 0by I (J):r.p 

+ ~; {KCDi''; + KQ)a)K0C1.p + (K0i,.; + K0 .;)K(J)C1.p}] dA 

Coefficients of the inhomogeneous term: 

C - f {pw + ~ hC1.Pi'';[(" +" )" -L-" (,' +" ) 0- 0 2 t y'; t';y r 0rzP , {<XP {0y'; I 00i' 

Calculation of local deflection of circular cylindrical shell 

A computer programme in FORTRAN language has been elaborated for 
the case of circular cylindrical shell on the basis of the relationships described. 

The problem was to investigate a local indentation of a circular 
cylindrical shell where the deflection could be described by a function 

h = - ~ ( cos ;* S 1 + 1) (cos :* qJ + 1 ) 
to a good approximation. 

The indentation was located between values-S* and S* in axial direction 
and between values-qJ* and qJ* in tangential direction on the cylinder, its 
maximum deflection from the ideal central surface being ~. 

For the particular problem, the shape of functions d0 was selected as 

COS(il;O Sl)[COS(jl:o qJ)+l] if O<isnl 

4 Periodica Polytechnica M, 28/2-3 
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Fig. 3 

sin(i2;O St)[COS(j2;o <P)+1] if n t <i:s;n2 

[cos (i3;o St)+1]sin(j3;o <p) if n 2 <i:s;n3 

where it, jt , i2 , j2, i3 , j3 may be positive odd whole numbers. 

l77 

a2 

Numerically, the programme was run for a cylinder of a radius of R = 2 m 
and a wall thickness ofb = 1 cm, subjected to an internal overpressure of 10 bar. 
The maximum extent of the deflection investigated was 20 cm in the axial 
direction, while 56 cm in tangential direction. 

Maximum deflection of the deformed surface from the ideal geometry was 
4 cm. 

As a result of the calculations made, an axonometric presentation of the 
deflection function is given in Fig. 1, and of the distribution of nondimensional 
axial and tangential forces per unit lengths in Figs. 2 and 3, respectively, the 
value of other stresses and momentum being negligible as compared with axial 
and tangential forces. 

4* 
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Conclusion 

The results of numerical calculations based on the derived relationships 
comply with the measurements and practical experience. According to 
investigations made so far, the method seems to be suited for the investigahon 
of the effect of different deflections from the ideal geometry. 

The method is advantageous in that calculations can be made by means of 
small computers available for the manufacturer and users of the vessels and 
thus the stress concentration due to deflection from the designed geometry can 
be quickly and easily detected in the course of after-construction measure
ments, and the necessary measures to eliminate the effect of deflections can be 
taken on the basis of the results of calculations. 

The results of investigations in the accuracy of the approximations, the 
comparison of the numerical calculations with the measurements will be 
published in the next paper. 

Or. Llszl6 KOCSIS H-1521 Budapest 


