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Summary 

The energy equation of cracked solids is formulated relying on field equations of 
continuum mechanics and thermodynamics. Under simplifying conditions valid under the test 
circumstances, the energy balance of elasto-plastic and of elastic solids is determined. An elastic 
material equation is applied to interpret path-independent line integrals, related, in turn, with 
other fracture mechanics characteristics. 

The mechanical model 

Let us consider a continuum of volume V and boundary surface A 
containing a material discontinuity (crack) of surface A~ (Fig. 1). A~ is assumed 
to be free of load. 

Under load, at a time t> to the crack surface increases by A(t)· Ar(t) = A~ 
+ A (t) Crack propagation has to be treated as a non-equilibrium thermody­
namical process, its correct description requires the introduction of surface­
dependent state characteristics. * 

Accordingly, in the following, p* will denote surface mass density, u*­
inherent surface internal energy density, s*-surface entropy density. Internal 
p'oints of a solid are those meeting the following equations: 

1 
e··= -(u. -+u· .) 
I) 2 I,) ).1 

Tf/-ij + pr - hk, k = pU' 

(1) 

(2) 

(3) 

(4) 

* An imperative also in classic continuum mechanics. But since field equations involve 
material time derivatives, their variation on materially steady-state surfaces may be neglected. 
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Fig. 1 

(5) 

(6) 

(7) 

The energy equation 

According to the first principal theorem of thermodynamics, at any 
instant of crack propagation, the energy balance is of the form: 

. . d 
W+Q= dt[K+UJ (8) 

involved magnitudes being: 

K = ~ f PUkUk dV+ ~ f P*UkUk dA + ~ f P*UkUk dA (11) 

v k AOO 

(12) 

Timely variation of quantities related to initial crack surface being negligible 
compared to other terms, the first principal theorem may be put as: 
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K[VJ + U[VJ + :t f y* dA (13) 

A 

where [v] represents the volume dispersion. 
The last term is denoted t in publications on fracture mechanics, and 

called the energy needed to form new surfaces. Concrete formulation of the 
energy equation needs constitutive equations, to be obtained through the 
second principal theorem of thermodynamics. Assume a T'fj part of the stress 
field hk , the heat flux vector, u' part of the internal energy, and entropy to be 
continuous and differentiable function of the following variables at a material 
point with given coordinates: 

u' =u'(sij; e. k ; e) 

s=s(sij; e,k; e) 

Introducing free energy density function 

Tfj= T'fj (eij; e,k; e) 

hk=hk(eij;e,k;e) 

r = p(u' - es) 

deriving and applying (6) and (7) leads to constitutive equations: 

T'!.= or 
IJ -oSij 

u' = ! ( r - e ~r ) 
p oe 

or =0 
oe ,k 

1 or 
s=---

p oe 

-hke,k?:.O 

Ttiij?:. 0 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

Expanding function r(eij; e) with respect to natural condition eij=O; e=eo 
and omitting all but linear terms: 

1 mT2 
r(eij; e) = "2 Cijk1 eijekl- f3ijSij T + -2- (22) 



296 J. LOVAS 

where 

(23) 

(24) 

(25) 

(26) 

Assuming the linear material to be, in addition, homogeneous and 
isotropic, free energy density function further simplifies to: 

~ et T2 
r(Cij; e)= GCij cij+ 2. ckkcnn-Wckk T - eo 2 (27) 

Applying linear heat expansion coefficient at: 

w=3),+2Gat (28) 
and 

(29) 

Available equations permit to write the so-called equation of heat conduction. 
For hk = -Kh,k 

(30) 

Again, general form of the first principal theorem: 

w+ f(pr-hk,k)dV=KW] + f updV+ :t f ')'*dA (31) 

v v A(t) 

Substituting (4): 

.. f fd df* W=K+ Ti/ijdV+ Tij8ijdV+
dt 

ydA (32) 

v v A(t) 

From Eqns (16) and (27) 

(33) 
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where: 

A == f {Ge ij eij+ ~ (ekkf} dV (34) 

v 

is deformation energy for a homogeneous temperature field. 
Making use of the heat conduction equation and Gree.n's theorem, 

second term jn (33) may obtain the form: 

leading to a general energy equation for a cracked solid: 

. . . f( d' K ) W=K+A + r.·e··+ -TkTk dV+ 
'J 'J eo' . 

v 

d ( Ce J" 2 ) K f 1 f + - - T dV - - TTknkdA- - TrpdV 
dt 2eo eo' eo 

v A v 

Introducing functions: 

the so-called dissipative power; 

H== 2~0 f T 2dVthermal power function 

v 

transforms the energy function to: 

(35) 

(36) 

(37) 

(38) 

w+ ~of TprdV+ ;0 f TT.knkdA=K+A +D+H+t (39) 

v A 

Power of outer forces, as well as heat power input from volume and surface are 
seen to cover the change of the energy, of the dissipation power, of the inherent 
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heat power of elastic deformations, as well as the energy needed for producing 
new surfaces in the solid. In compliance with (13), it is seen to depend on the 
inherent surface energy and on the crack propagation rate as a rule. 

The inherent surface energy may be decomposed to free energy density 
r*(sijBo) and sum Bs* The free surface energy may be produced as linear 
combination of surface or stable bond energy r~ of an undeformed solid, and a 
surface deformation energy A*(Sij)' Hence, effective surface energy y* : 

y*=p*{r~(O, Bo)+A*(Si)+Br+ ~ unuk } (40) 

Simplified equations 

Under circumstances of fracture mechanics tests, energy change due to 
thermal effects, and change of the kinetic energy have been found to be 
negligible compared to other terms, at a significant simpification of general 
equation (36). 

(41) 
where 

e_ 1 
A -"2 T;j-8ij 

is energy of elastic deformations. 
Neglect of thermal effects makes the dissipation power a purely 

mechanical phenomenon, possibly equal to the power of plastic deformations. 

(42) 

where T;j= T;j- ~ Tkkbij stress deviator tensor. These expressions make the 

energy equation for an infinitesimal change: 

(43) 

For a change between two states of a solid differing only by an increased 
crack surface, the changes may be reduced to it, that is: 

0[ ... ] d 
d[ .. . ]= "A Ar; c ~ 

L 

(44) 

In the following, notation dA L == da generalized in the literature will be applied. 

oW _ [OA e + OAP] = ar 
oa oa aa oa (45) 
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Analysis of an elastic solid 

For an elastic solid AP=O. The energy balance is: 

aw aAe ar 
---=-=y 
oa oa aa-

299 

(46) 

Introducing the term of total potential energy, 

P=Ae-W= ~ f TijGijdV-J Pkuk dA (47) 

v A 

(46) becomes: ar ap 
Y=-=--aa aa (48) 

That is, energy resulting from the reduction of potential energy covers that 
needed for producing new surfaces. 

From the aspect of crack propagation, two typical boundary conditions 
are possible. One is the case of the so-called "fixed grip" where boundary 
displacement is assumed to be zero for a small value of crack propagation. 
Then: 

(49) 

G is called the strain energy release rate, namely the energy needed for crack 
propagation has to be taken from the energy field of elastic deformations. 

The second case is that of so-called "dead load" where the applied load is 
constant for a small value of crack propagation. 
Now, 

_ ~p = a~e I Pk=const. = ~r 
oa oa· oa 

(50) 

Defining aa~e as the strain energy release rate may be physically misleading. 

. aAe . . 
Absolute values of term -a have been found to be equal In eIther case, a, 

(explaining) why the term strain energy release rate is applied in either case. 
Equations (49) and (50) are equivalent to Griffith'scriterion on brittle 

crack propagation, stating the crack propagation to start at ~ [P+r]=O. 
oa 

Equation (46) also underlies the Sih theory of strain energy density. 
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Path-independent line integrals 

Let us consider a plate of unit thickness, with a crack of size a at time t = to 
(Fig. 2). At any internal point of the solid, equations 

are assumed to hold. 

1';j,j + pi; = pVj 

1';j= ~j 

1 
e··= -(u .. +u .. ) 

I) 2 1,) ),l 

(51) 

(52) 

(53) 

(54) 

The continuum material is said to be elastic if there is an elastic potential 
Ae(eij, Xk) yielding the stress field as: 

(55) 

Deriving A e with respect to Xy : 

(56) 

Let ® denote some operation symbol (algebraic multiplication, scalar 
multiplication, vector multiplication, tensor multiplication) and Co ... q some 
tensor of order q at any internal point: 

8Ae 

ae-ea.p,i' ® Co...q='Fa.pea.P,! ® Co... q 
a.p 

Arranging with regard to (51) and (53): 

(A e ® Co...q),p-(Ae ® Co...q.p)bpy=('Fa.pua.,y ® Co .. ),p­

- 'Fa./1Ua.., ® Co ... q,P. 

(57) 

(58) 

Integrating it over a volume V* of the solid containing only internal 
points, and applying the Gauss-Ostrogradsky theorem: 

J (Aeb py ® Co... q- 'Fa.pua." ® Co..)npds­
f 

- J (A e ® Co... q. i,+ 'Fa.pua.,y ® Co...q,p)dA =0 
A 

(59) 
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X1 
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I 

Fig. 2 

Integrating along a curve starting at one, and ending at the other, surface of the 
crack will generally yield a non-zero integral. Such integrals are fundamental in 
fracture mechanics, and their various forms are obtained by aptly selecting ® 
and C" ... q' 

J-Integral 

Be ® an algebraic multiplication and C" ... q== 1. Then from (59): 

Jy= J (A et:5py - 'Fa.pua)npds 

Taking y = 1 leads to the integral according to Rice: 

M-Integral 

(60) 

(61) 

Let ® indicate vector multiplication and C" ... q == x y• Then from (59), since 
xa,p=t:5r:r.P 

(62) 

where 
Pp= Tpr:r.nr:r. 

Assuming again the solid to be linear elastic yields: 

e 1 T. 
A = i r:r.peap (63) 

4 



302 J. LOVAS 

Hence: 
(64) 

Relation of J and G 

In compliance with Eqs (51) to (54), neglecting kinetic energy, energy 
balance may be written as: 

(65) 

Since 

(66) 

(67) 

Confronting it to (61) J = ~r equals the energy needed to produce unit 
oa 

surface. 
According to statements Eqs (49) and (50) show for elastic (not only linear 

elastic) solids to be: 
J=G. 

Symbols 

1ij - Cauchy's stress tensor; 
J; - force density by volume; 
U j - displacement field; 
Vi - rate field; 
Gij - deformation tensor; 
r - internal heat source density; 
U - internal energy; 
e - thermodynamical temperature; 
Bij - deformation rate tensor for a small deformation; 
hi - heat flux vector; 
K - heat conductivity coefficient; 
Pi - surface force density; 
bij - Kronecker delta: 

ea.p - Permutation symbol: 

otherwise 

1 for i= j 
o for i i= j; 
1 for even permutation and IX i= f3 

- 1 for odd permutation and IX i= f3 
O. 

........ -............•. ~. ~ - ..•.•... _----_._------- . 
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