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This paper presents the dynamic performance characteristics of elliptical 
and three-lobe gas bearings. The perturbation formulation suggested by Lund 
has been modified to obtain stiffness and damping properties. Stability studies 
have been carried out for selected compressibility parameters. Comparison of 
performance characteristics of both types of bearings has been made. 
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Nomenclature 

- BjkC9/PaR2, damping coefficients (dimensionless) 
- damping coefficients U= 1,2; k= 1,2) 
- C/R' clearance (dimensionless) 
- bearing clearance 
- eccentricity 

Ii/C' film thickness (dimensionless) 
- film thickness 
- film thickness in static equilibrium (dimensionless) 
- bearing length 
- MC92/PaR2, journal mass (dimensionless) 
- journal mass 
- MJC92/PaR2, critical mass (dimensionless) 
- critical mass 
- shape functions (i = 1,4; 1,4) 
- bearing centre 
- journal centre 
- P/Pa' pressure (dimensionless) 
- pressure 
- ambient pressure 
- pressure in static equilibrium (dimensionless) 
- flow across the boundary of element 
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- iix/C, iiy/C: coordinates of displacement of journal centre 
(dimensionless) 

- displacements along x and y directions 
- bearing radius 
- boundary of the mth element 
- SjkC/PaR2, stiffness coefficients (dimensionless) 
- stiffness coefficients (j= 1,2; k= 1,2) 
- Wo/PaR2, film force in static equilibrium (dimensionless) 
- film force in static equilibrium 
- bearing fixed orthogonal axes 
- coordinates of centre of curvature of bearing surface 
- coordinates of journal centre 
- angalar speed of rotation 
- e/C, bearing eccentricity (dimensionless) 
- bearing ellipticity (dimensionless) 

- 6J1w (R/C)2, compressibility parameter (dimensionless) 
Pa 

- viscosity 
- i9t, time (dimensionless) 
- whirl frequency 

- !!.-, frequency ratio (dimensionless) 
W 

- angular coordinate measured from X - axis 

- fluidity matrix for entire assemblage 
{pd, {P2} 
{Ql}, {Q2} 
{Fw1 }, {Fw2} 

- nodal pressure for entire assemblage 
- nodal flows for entire assemblage 
- hydrodynamic terms for entire assemblage 

{q} - {::} , coordinates of displacement of journal centre 

{4} 
d 

- dr {q} 

d2 

- dr2 {q} 
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Introduction 

The hydrodynamic gas bearings have the advantage of negligible friction 
losses, cleanliness and easy availability of air as lubricant but they encounter 
two familiar shortcomings, i.e., low load carrying capacity and hydrodynamic 
instability. Bearings of non-circular cross-section (Figs 1 and 2) using two or 
more circular lobes, permit large operating lobe eccentricity and still ensure 
minimum film thickness to avoid metal to metal contact. They are, therefore, 
capable of much superior dynamic performance [1J and partly overcome the 
problems associated with circular gas bearings. 

The finite element method has been in use during the last one decade for 
obtaining solution to lubrication problems [2, 3J. Bulk of the work in this area, 
however, concerns the incompressible fluids and comparatively a small 
amount of literature [4, 5J using FEM techniques for solving lubrication 
problems for compressible fluids is available. Using the finite element method 
and modifying the perturbation formulation as suggested by Lund [6J, this 
paper presents the dynamic properties of elliptical and three lobe gas bearings 
(Figs 1 and 2). The modified method is simpler and more straightforward than 
that earlier suggested by Lund. Stability studies have been carried out for 
selected compressibility parameters. 

El = 0 

Lobe 11 

€ 1 and Ez - Eccentricities of lobe I and 11 
~1 and 'Ilz - Attitude angles of lobe I and 11 

Fig. I. Geometry of Elliptical Bearing 
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, Lobe I 
'---

Lobe 11 

El ,EZ• £3 Eccentricites of lobe I, II,HI 
~1' $Z' $3 Attitude angles of lobe 1,11,111 

Fig. 2. Geometry of Three-Lobe Bearing 

Theoretical Analysis and Finite Element Formulation 

For compressible fluids and isothermal conditions, the Reynolds 
equation in non-dimensional form is, 

The film thickness is given by 

ho= l-(xJ-xB) cos e -(YJ- YB) sin e. (2) 

If the journal centre position is perturbed by bxJ and by J from its static 
equilibrium position identified by X JO in horizontal and Y JO in vertical 
direction, the new position is given by 

xJ=XJo +6XJ 

YJ=YJo+6YJ' 

Here, 6XJ and 6YJ are small and define harmonic motion in which 

6XJ= Re {I 6XJ I er} and 6YJ= Re {I bYJ I er}. 

The corresponding equations for the dimensionless film thickness and 
pressure in the perturbed state are, 
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h=ho +()xJ cos e +c:5YJ sin e 
P=PO+c:5XJPI +c:5YJP2· 
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(3) 

(4) 

The developed bearing surface is discretised using isoparametric 
elements. Galerkin's technique is applied to Eq. (1) to obtain the following 
equation 

(5) 

For static equilibrium this equation reduces to 

(6) 

Equation (5) is differentiated partially with respect to c:5xJ and c:5y J to obtain the 
equations for PI and P2 . 

(7) 
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The boundary conditions are, 

PO=Pa z= ±L/D 

PI =0 e =0, n, 2n (for elliptical bearing) 

P2 = 0 e = n/6, 5n/6, 3n/2 (for three-lobe bearing) 

po(B,z)=po(e+2n,z) \ 

PI(e,Z)=PI(e+2n,z) 0::;;e::;;2n. 

P2(B, z)= P2(e +2n, z) 

For an element m, Eqs (7) and (8) can be represented as, 

[KJm{Pl}m= {QI}m+ {Fwdm 

[Kr {P2}m = {Q2}m + {F w2}m. 

(9) 

(10) 

(11) 

Following the usual procedure of assembling the element equations, the system 
equations can be written as, 

[KJ {pd={Qd+{Fwd 

[KJ {P2}={Q2}+{Fw2 }· (12) 
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Dynamic Performance Characteristics 

Stiffness and Damping Coefficients 

The hydrodynamic forces are computed by integration of pressure 
components PI and P2 . The horizontal and vertical components of these forces 
are: 

(13) 

From this equation F x and F y can be expressed by first order Taylor series 
expansions in the neighborhood of the steady-state equilibrium position: 

F x = F xO + ZxxfJxJ + ZXyfJy J 

Fy=Fyo + ZyxfJx ] + ZyyfJYJ. (14) 

From Eqs (13) and (14) the following relations are obtained: 

(15) 

(16) 

{
Zyx}= +fLID f21t P2{C?S~} de dz. 
Zyy SIn e (17) 

-LID 0 

The coefficients Zxx, ZXy, ZyX' and Zyy are in complex form and are given 
as 

(18) 

The coefficients S 11 ' S 12 , S 21 and S 22 are called stiffness coefficients and 
are computed by integrating the real part of the film pressures PI and P2 . 
Similarly, coefficients Bll , B 12 , B21 and B22 are the damping coefficients 
obtained by integrating imaginary parts of film pressures PI and P2 . 
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Equation of Motion and Threshold. Speed. 

The equation of motion for the linearized system can be written as, 

(19) 

The stability studies have been made for the system using the linearized 
equation of motion (Eq. (19)) and the Routh's Criteria [7]. Since the stiffness 
and damping coefficients are dependent upon the whirl frequency, an iterative 
procedure as detailed in Section 4, was followed to compute the whirl frequency 
ratio. The critical mass and the threshold speed, above which the system 
becomes unstable, are then calculated. 

Solution Method 

Equation (6), which corresponds to the static equilibrium condition is 
non-linear and is solved by the finite element method using the incremental 
approach of Reddi and Chu [3]. The static equilibrium solution has been 
obtained for vertical load support by computing the equilibrium attitude angle 
through iteration. The pressure distribution corresponding to the static 
equilibrium condition is used in solving Eqs (7) and (8). The pressure 
components Pt and P2 obtained from the solution of Eq. (12) are used for 
computing hydrodynamic forces and the stiffness and damping coefficients. 

The whirl frequency ratio satisfying the characteristic equation of the 
linearized equation of motion (Eq. (19)) has also been obtained using an 
iterative procedure (Fig. 3). The starting value of whirl frequency ratio is taken 
as 0.5 for which stiffness and damping coefficients are computed. These are 
substituted in the characteristic equation of Eq. (19) and a residue is obtained. 
Depending on the magnitude of the residue, a new value of whirl frequency 
ratio is selected and the process is repeated until the residue becomes 
sufficiently small (.001). The critical mass obtained corresponding to the whirl 
frequency ratio so arrived is used to compute the threshold speed above which 
the system becomes unstable. 



I ICompute stiffness and 
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PHI=PHI-(PH-PHI)xUH ~ 
HW- UH 

Legend 

PHI - Whirl frequency ratio 

UH - Residue in characteristics equation 

TOl - Acceptable error in UH 

DPHI-Correction in PHI 

ITN - Maximum No of iterations 

Pri nt resul ts 

PHltHIN-(PHIP-PHIN)xWN tt'1 
WP-WN 

PHI:; PHI + DPHI 

Fi{/. 3. Flow Diagram for Whirl Frequency Ratio 
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Results and Discussions 

A computer program, based on the analysis of this paper, was developed 
to obtain the dynamic performance characteristics of elliptical and three-lobe 
bearings with compressible lubricant. The results obtained by the present 
method, using the finite element formulation, have been compared with those 
of Cheng [8J for the case of plane journal bearing. Figures 4 and 5 show the 
whirl frequency ratio and the threshold speed plotted against compressibility 
parameter (A). The results agree very well with those of Cheng for various 
compressibility parameters and bearing eccentricities. 

The elliptical and three-lobe bearings studied in the present case have the 
same geometrical (L/D= 1, sp=0.5) and operating parameters (s, A) so that 
their performance characteristics can be compared. 

The equilibrium attitude angles for vertical load support computed for 
elliptical and three-lobe bearings have been plotted in Figs 6 and 7. With the 
increase in the bearing eccentricity, the equilibrium attitude angle decreases. 
The rate of decrease is higher at larger values of the bearing eccentricity. It is 
also observed that at smaller values ofthe compressibility parameter, the three
lobe bearing has smaller equilibrium attitude angles, whereas at higher values 
of compressibility parameter, the elliptical bearing has lower equilibrium 
attitude angles. So, the nature of variations of attitude angles with eccentricity 
ratios and the compressibility parameter do not give a clear indication of the 
expected dynamic response of the elliptical bearing relative to that of the three
lobe bearing. 

Stiffness and damping coefficients have been computed for half frequency 
whirl (y = 0.5) condition. For various bearing eccentricity ratios, these 
coefficients have been plotted against the compressibility parameter in Figs 8 to 
23. The values of diagonal stiffness and damping coefficients (Sl1 , S22' Bll , 
B22) increase with increase in the compressibility parameter. The values of 
cross-coupling coefficients (S12' S21' B12 and B21 ) start falling at higher 
compressibility parameters and eccentricity ratios. The stiffness and the 
damping coefficients do not follow a definite trend with regard to the two types 
of bearings. 

Frequency ratios computed for various bearing eccentricity ratios and 
compressibility parameters, A = 1 and 3, have been plotted in Figs 24 and 25. 
For both the compressibility parameters, the frequency ratios values decrease 
with the increase in bearing eccentricity ratios. For all the values of bearing 
eccentricity ratio, the elliptical bearing has higher values of frequency ratio at 
compressibility parameter, A = 1 than those of the three-lobe bearing. On the 
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20 

Elliptical bearing 
LID =1.0·, c.p :0.5 

90 

CD A=1.0 

80 CD A=2.0 

@A=3.0 

70 

60 

50 

Fig. 6. Equilibrium Locus of Journal Centre for Vertical Load Support 
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Three lobe bearing 
LID =1..0; tp=.O.5 

90 

CD A=1..O 

80 Q) A=2.O 

@A=30 

'lO 

60 

50 

Fig. 7. Equilibrium Locus of Journal Centre for Vertical Load Support 
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20.0 r-------------------, 
Elliptical bearing 

10.0 
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Fig. 8. Dimensionless Stiffness Coefficient, S 11 
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Fig. 9. Dimensionless Stiffness Coefficient, S22 
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Fig. 10. Dimensionless Stiffness Coefficient, S 12 
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Fig. 11. Dimensionless Stiffness Coefficient, -S21 
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Fig. j 2. Dimensionless Stiffness Coefficient, S 11 

20.0 Three.lobe bearing 
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Fig. 13. Dimensionless Stiffness Coefficient, S22 
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20.0 r---------Th-re-e---Io-b-e-b-e-a-ri-n-g-, 
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Fig. 14. Dimensionless Stiffness Coefficient, S12 
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Fig. 15. Dimensionless Stiffness Coefficient, -S21 
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Fig. 16. Dimensionless Damping Coefficient, Bll 
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Fig. 17. Dimensionless Damping Coefficient, B22 
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Fig. 18. Dimensionless Damping Coefficient, - B 12 
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Fig. 19. Dimensionless Damping Coefficient, B21 
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other hand, at A = 3, the three-lobe bearing has higher values of frequency 
ratio. 

Critical mass, threshold speed and the minimum film thickness obtained 
for both types of bearings have been plotted against the load carrying capacity 
(Wo) in Figs 26 and 27. The critical mass values increase with the increase of the 
film force, whereas the threshold speed and minimum film thickness show a 
decreasing trend. Critical mass and threshold speed values are larger in the case 
of three-lobe bearing as compared to those for the elliptical bearing, for all the 
parameters studied, but the minimum film thickness is smaller. 

It can therefore be concluded that for identical geometrical (LID, Bp) and 
operating (B, A) parameters, the three-lobe bearing exhibits a larger domain of 
journal stability, but requires more exacting manufacturing tolerances. 
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