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The structure of elements generating a so-called alternating group, and 
the element relations will be considered from group construction aspects. 
Three problems ,.,,-ill be involved: 

1. It ,.,,-ill he demonstrated that elements of form (ij)(kl) generating the 

n-degree alternating group An are contained exactly 2. [ (n ; 4) + 3. {n ~ 4} +1 ] 

times in the main diagonal of the Cayley table where i ~ j ~ k ~ 1 and 
i, j, k, 1 = 1, 2, 3, ... , n. , . 

2. It ,.,,-ill be proven that the number of elements under 1 is 3 (:) •. 

3. Finally, it ,.,,-ill be verified - by introducing the concept of the expand­
ing set - that the n-degree alternating group An may also be produced by 
products of elements in the n-degree symmetric group Sn with exactly (n-4) 
fixed elements. 

One generator system of the n-degree alt!,!rnating group An is the .set 
of all elements of form (ij) (kl) where i ~ j ~. k ~ I and i, j, k, 1 = 
= 1,2,3, ... , n (see p. 243 in [1]). These elements are very important for the 
examination of the subgroups of the alternating group, and so are triple cycles, 
also generating the alternating group. This is why a detailed analysis of their 
properties is advisable. 

Examinations below will affect generating elements of form (ij)(kl), 1:0 see 
products of what elements of n-degree symmetric group Sn they come from;' 
number of these elements in the main diagon3J. of the Cayley table of the' 
n-degree symmetric group Sn - hence of the n-degree alternating group An; 
- how many generating elements exist; finally, what subset of the n-degree 
symmetric group Sn of an odd inverted number of elements the n-degree 
alternating group An results from. 

The general formula of the number of alien cycles in the n-degree sym­
metric group Sn is known to he: 

4* 

1 ' 
- [n( n - 1) ... (n - k + 1)] , 
k 
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whe;r~on isthe degree of Sri, and k the cycle length (see p. 40 in [3]). 
For instance, elements (1 2 3 4) of S5 number 30, namely n = 5 and 

k = 4, hence: . 
5·4·3·2 

30=----
4 

Or, elements (1 2 3) (4 5) number 20, namely: 

5 ·4· 3 2· 1 
20= '--

3 2 

This formula also lends itself to determine the number of cycles generating the 
n-degree alternating group An- Here the numbers of cycles of form (ij)(kl) and 

(iik) will be determined by formulae 3 (:) and 2 (~), respectively. Demonstra­

tionwill refer to the (ij)(kl) cycles, since these "will be treated alone. In the 
following, elements of form (ij)(kl) will be called the preferential, and those 
(iJk) the principal elements. Their number of occurrence in the main diagonal 
(If the Cayley table makes them preferential. 

I 

The identical, so-called preferential elements 'will be demonstrated to 

occur exactly 2 un; 4) + 3 (n ~ 4) + 11 times in the main diagonal of the 

Cilyley table of the n-degree alternating groups An' where n ~ 4. 

1.1 Definition 

Preferential elements are generating elements of the form (ij)(kl) of the 
n~,~egree alternating group An' where i ,= j ,= k ,= land i, j, k, 1 = 1, 2, ... n, 
t4eir set will be denoted by K. 

1.2 Theorem 

!,' Identical elements K occur exactly 2 [ (n ; 4) + 3 (n ~ 4) + 1 J times in the 

main diagonal of the Cayley table of the n-degree symmetric group Sn - hence 
of the n-degree alternating group An' where n ~ 4. 

This theorem will be demonstrated by means of two lemmas. The first 
lemma will point to these elements in n-degree symmetric group Sn the product 
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of which -yields elements K, and the second to these elements the squares of 
which generate K. 

Before stating the first lemma, two s'ubsets of the n-degree symmetric 
group Sn "\Vill be needed. 

Selecting out of Sn elements the cycles ,,,ith at least (n-4) fixed elements 
and denoting their set by H, those elements of H ,,,ill be taken the prod~C(ts 
of which are squares of cycles consisting of four different elements. Denote 
their set by M. 

Cyclic form of elements H: 

0:: = (i j k I) 

(3=(abc) 

Y = (TS). 

The multiplication table of Sn of elements each containing at least (n -4) fixed 
elements is the same as the product of element" H. According to therul~' of 
permutation, these will include product pairs the factors of which have four 
different elements in all. ., . 

Then obviously, 
Cl 

for any p and q. 
Furthermore: 

so that only non-adjacent elements of {O::p} are identical to {Yq}. 
For instance, if: 

0:: = (ijkl) then Yl = (ik)' and Y2 = (jl) 

and finally: 

(Here in the first case e the element in the odd place is different, and in the 
second case e the middle one - in the cycle.) . 

For instance: 

(ijk)(ajk); and (ijk)(ibk); 

Thus, elements in .M are: 

0::2 = (ijkl)2 = (i k)(j1) 'j' 
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er; • y =;: (ijkl)(ik) = (ij)(k1) = (ikj1)2 

(:Jp' (:Jq = (ijk) (ajk) = (ik)(ja) = (ijka)2 

(:Jp' (:Jq = (ijk)(ibk) = (ij)(kb) = (ikjb)2 

(p ;z q) 

(p ;z q). 

1.2.1. Lemma: 

A generator system of K is the entity of elements ill. 

Proof: 

The weU-kno'\V"ll relationship states that if 6 and e are elements of Sn' 
then the cyclic structure of the result of 6e6-1 equals that of e (see p. 39 in [3]). 
Hence: 

that is, for 
6 E Sn and e EM 

the structure of 6e6-1 equals that of e where e means a cycle square (i j k 1)2 
for any elements in Sn' Namely, be 

a) 

then 

b) 

c) 

d) 

61 = ... (ijk1) ... 

e = (i k) (j I) , 

... (ijkl) ... [(ik) (jl)] ... (lkji) ... = (ik){jl) 

62 = ... (ijk) ••. 

. . . (i j k) . . . [( i k) (j I)] . . . (k j i) . . . = (i I) (j k) 

63 = ... (ji) .•• 

... (ij) ... [(ik) (jl)] ..• (ij) •.. = (i1)(jk) 

64 = ... (i) ... 

... (ip) ... [(ik) (jl)] .. , (pi) .•. = (pk) (j1). 

Hence, in fact, M = K. 

1.2.2. Lemma: 

The generator system of K is at the same time square of any element of 
the n-degree symmetric group Sn with exactly (n-4) fixed elements. 
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Proof: 

These elements are of type rx,2, where rx,2 E M, for Mc Sn' The main 
diagonal of the Cayley table contains only squares rx,2, has really the desired 
property. Namely: 

rx,2 = (ikjl)2 = (ij)(kl) E K. 

It can be proven that any element in Sn other than rx, the square of which is 
again an element of K, is of type 0, where 0 is the product of alien cycles of 
form (i j k 1)(a1a2)(a3a4) ••• (an_san_ 4) and cycle products have no common part. 
Namely here absolutely: 

and so it is since 

squares of all elements other than rx" rx,-I, consisting of products of transposi­
tions other than (i j)(k I), where i ~ j ~ k ~ l. 
Thus: 

either o· rx, = rx,2 

or 0 . rx, = e, 

e being the unit element of the group. 
Now, the theorem is simple to demonstrate. 

Proof: 

rx, and 0 shaped cycles are contained exactly once in rows and columns 
of the Cayley table, and so are their squares in its main diagonal but: 

hence identical elements K are contained exactly 2 [(n; 4) +3(n ~ 4) + 1] times 

in the main diagonal of the Cayley table, where n ~ 4. 

11 

Now, the formula 3 (:) furnishing the number of preferential elements 

generating the n-degree alternating group An will be demonstrated combina­
torically and geometrically. 
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2.1 Theorem 

The generator system of preferential elements of the n-degree alternating 
group An numbers 

where n !'§; 4. 
The demonstration will involve an auxiliary lemma. 

2.1.1. Lemma: 

The main diagonal of the Cayley table of the n-degree symmetric group 
Sn hence, of the n-degree alternating group An - contains all preferential 
elements. 

Proof: 

This statement is a direct conclusion of Lemma 1.2.1. namely: 

N . N == {( i j k 1)}2 E 1\1, 

where: 

(ij kl) E N, 

where 1\1 = K has been demonstrated. 

A. Combinatorical proof of the theorem 

According to Lemma 1.2.2. 

0:;2 E K. 

on the other hand, according to Lemma 2.1.1., all elements K are contained in 
the main diagonal of the Cayley table of the n-degree alternating group An' 

Thus, 4 out of n elements have to be selected in all ways possible, hence 

in (n) ways. To obtain the desired configuration, the selected elements have to 

be ;~ired, possible in (:) ways. To the selection of each (:) (:) configurations 

belong, making up the number of all selections to: 

(~) . (:) 
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Now, according to ex· a = 1 each form (ij)(kl) is contained tv.ice (see Lemma 
1.2.2.) hence K is of a number: 

namely: 

~(4)(n) _3(n) 
2 2 4 - 4· 

B. Geometrical proof of the theorem 

2.2 Definition 

Be parallelness defined as follows: 
Be L the set of straight lines in the plane, i.e., L (where II is a plane set 

and II = {1,2, ... , n}). Now, if 1 ELand P ~ 1 there exist one, and only 
one straight line g(g E L) such as: 

(PEg) 1\ (lllg)· 

A parallel relation is an equivalence relation, hence for 

~ 
~ 

This relation permits to classify elements into so-called parallel classes. 
2.B.1. For instance, if: 

IT = {I, 2, 3, 4}, 

then 

L = {{1,2};{1,3};{1,4};{2,3];{2,4};{3,4}} 

~
3 x x 

2 1 x x 
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In this case L has three classes with no common part each pair, i.e.: 

{1,2} 11 {3,4} 

{I,3} 11 {2,4} 

{I,4} 11 {2,3}. 

Obviously, there is an imaging cp helping to image isomorphically the set of 
parallel straight lines on a subgroup of the n-degree alternating group An: 

{I,2} . {3, 4} ~ (12) (34) 

{I,3} . {2, 4} ~ (13) (24) 

{1,4}. {2,3}~(14)(23). 

Thereafter this relationship will be generalized for any n, where n ~ 4. 
Take an arbitrary set of points, of them n are fixed, and classify the 

parallel straight lines meeting the relation in the obtained plane set (set of 
planes) 

II= {I,2,3, ... ,n}. 

Let us fix two of the n points as in example 2.B.2. and select 2 points of the 

remaining (n-2) points in any possible hence (n; 2) different ways. The ob- . 

tained expression has still to be multiplied by (n-l), and performing all fur­
ther selection yields the number of classes: 

(n ; 2) (n _ 1) + (n ; 3) (n _ 2) + ... + (!) . 4 + (~) . 3 = 

= ~ (k - 2) k _ 1) . 
k=4 2 

Full induction demonstrates that: 

i (k - 2) (k _ 1) = 3 ( n) . 
k=4 2 4 

For n = 4, this statement is valid, namely: 

(~).3=3, 

complying with example 2.B.2. 
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Assume the statement is valid for k: 

(k; 2) (k _ 1) + (k; 3) (k _ 2) + ... + ( ~) . 4 + (~) . 3 = 3 ( ~) . 

It will be proven that the statement also holds for k + 1: 

3 ( k) + (k - 1) k = 3 ( k) + (k - 1) (k) = 3 ( k) + (k - I)! 
4 2 4 2 1 4 2! (k - 3)! 

k! 
---= 
(k - I)! 

= 3 ( ~ ) + 2! (kk~ 3)! = 3 ( ~) + 3 3! (kk ~ 3)! = 3 [( ~ ) + ( ~ )] = 3· (k: 1) 

making use of ( ~) + (k: 1) = (n; 1) . 

It follows directly that in case of any n, the set of parallel straight line 
classes corresponds to, hence is isomorphic with a subgroup of the group An' 
Thus, there is a K c An with elements in K numbering: 

ID 

It will be demonstrated that 

where 

and elements of N are of type aG. 

Prior to stating the theorem, let us introduce definitions: 

3.1 Definition 
A set H is termed an expanding one if its product is a group G, so that 

HnG = 0. 
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3.2 Definition 

Sets are termed semi-expanding ones if their product is a group, and 
their elements are not absolutely elements of that group ~ . 

3.3 Definition 

A cycle is termed odd (even) if it can be decomposed into products of 
transpositions of odd (even) number. 

3.1.1 Theorem 

The set of cycles containing (n-4) fixed elements in the n-degree sym­
metric group Sn is an expanding one. 

Proof: 

Cycles containing (n-4) fixed elements are odd in number, their prod­
uct is even. 

The resulting group will be seen to be exactly the n-degree alternating 
group An" 

Take odd cycles 'vith exactly (n-4) fixed elements of the n-degree 
symmetric group Sn' Their product is of type 1X2, where: 

1X=(ijkl) 

and set of their elements is N, Le., 

IX EN. 

It is stated that any 

A trivial statement is IXp • IXq E An' namely both IXp and IXq are odd, thus 
their product is even, thereby An fully contains IXp • IXq• (Namely An contains 
all even cycles of Sn.) Validity of statement N· N = An' needs still to prove 
that the outcome of any product IXp • IXq is a triple cycle or product of triple 
cycles. Now, it is sufficient to demonstrate that N· N contains all elements 
of form (ij) (kl) generating An' already done in Lemma 2.1.1. hence, in fact, 

N· N=An. 
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Products IXp . IXq yield in fact a triple cycle or a product of triple cycles if IXp 
and IXq are cycles with four elements, all of them being different. 

Namely, then the following opportunities arise: 

1. IXp n IXq = 0 

Be now: 

IXp = (ijk1); IXq = (abed) 

IX p • IXq = (i j k 1) • (a bed) = (i j k ) (i 1) (a be) (a d) = 

= (ijk)(abe)(i1)(ad) = (ijk)(abe)(i1d)(iad) 

2. IXp n IXq = {j} 

xp' IXq = (ijkl)(abjd) = (idabjk1) = (ida)(ibj)(ikl) 

3. xp n Xq = {i 1} 

IX p . IXq = (i j k 1)( a i cl) = (i j k a) (l e) = (i j) (i k a) ( 1 e) = 

= (ij)(le)(ika) = (ije)(i1e)(ika) 

4. IXpn IXq= {j k I} 

IX P • IXq = (i j k 1) (a j k 1) = (i k a j 1) = (i k a) (i j 1) 

5. IXpnIXq={ijkl} 

IXp . IXq = (i j k 1)2 = (i k) (j I) = (i j k) (j k I) 

Summary 

Three problems of elements of form (ij) (kl) generating the n-degree alternating group 
An will be examined. 

First, the number of elements of form (ij) (kl) in the main diagonal of the Cayley table 
of the n-degree alternating group An is examined. 

The second one demonstrates geometrically and comhinatorically the well-kno'wn state­
ment that the number of elements in group An is 3(~). 

Third, it will be considered, by introducing the concept of expanding set, the product 
of what elements of the n-degree symmetric group Sn composes the n-degree alternating 
group An. 
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