ON SOME METRICS AND CONNECTIONS IN THE TANGENT BUNDLE*

By
Márta Szilvási-Nagy
Department of Descriptive Geometry, Technical University, Budapest

Received June 16, 1977
Presented by Prof. Dr. Gy. Strommer
K. Yano has given the global description of the relationships between a manifold M and its tangent bundle $T(M)$. He has defined derivational mappings of the algebra $\mathscr{J}(M)$ of tensor fiels of a manifold M into the algebra $\mathscr{J}(T(M))$ of tensor fields of the tangent bundle $T(M)$ of M. First the definition of the vertical lift and the complete lift [2], then that of the horizontal lift of tensor fields [3] have been given. In [4] metrics and connections in the tangent bundle have been considered.

In this paper three further metrics will be discussed, which can be defined on $T(M)$. The base manifold, the tensor fields and the affine connection will be supposed to be of class C^{∞}, further M will be assumed to be a connected Riemannian space. Notations and terminology of the quoted papers will be followed.

Let $\left(x^{i}\right)(i=1,2, \ldots, n)$ be a local co-ordinate system in a co-ordinate neighbourhood U in M and let π be the projection $T(M) \rightarrow M$. Denote the induced local co-ordinate system is $\pi^{-1}(U) \subset T(M)$ by $\left(x^{i}, y^{i}\right)(i=1,2, \ldots, n)$ or by $\left(\xi^{I}\right)(I=1,2, \ldots, n)$, where $\xi^{i}=x^{i}$ and $\xi^{i}=\xi^{i}+n=y^{i}$. That is, if $\bar{x}=b^{i} \frac{\partial}{\partial x^{i}} \in T_{x}(M)$ and $x \in M$ is a point with co-ordinates $a^{1}, a^{2}, \ldots a^{n}$ with respect to $\left(x^{i}\right)$, then \bar{x} has co-ordinates $a^{1}, a^{2}, \ldots, a^{n}, b^{1}, b^{2}, \ldots b^{n}$ with respect to $\left(x^{i}, y^{i}\right)$. If $\mathscr{X}=X^{i} \frac{\partial}{\partial x^{i}}$ is a local vector field on M, then its vertical, complete and horizontal lifts in terms of the induced local co-ordinate system are

$$
\begin{align*}
\mathscr{W}^{V} & =X^{i} \frac{\partial}{\partial y^{i}} \\
\mathfrak{X}^{C} & =X^{i} \frac{\partial}{\partial x^{i}}+\frac{\partial X^{i}}{\partial x^{i}} y^{j} \frac{\partial}{\partial y^{i}} \tag{1}\\
\mathfrak{X}^{H} & =X^{i} \frac{\partial}{\partial x^{i}}-\Gamma_{j s}^{i} y^{j} X^{s} \frac{\partial}{\partial y^{i}}
\end{align*}
$$

[^0]respectively, where $\Gamma_{j k}^{i}$ denote components of the affine connection defined on M with respect to a local co-ordinate system (x^{i}). $\operatorname{Be} \frac{\partial X^{i}}{\partial x^{j}} y^{j}=\partial X^{i}$ and $\Gamma_{j s}^{i} y^{j}=$ $=\Gamma_{s}^{i}$, then the local expressions for the various lifts of the vector field are in short:
\[

\mathfrak{X V}:\left[$$
\begin{array}{c}
0 \\
X^{i}
\end{array}
$$\right], \mathfrak{X}^{C}:\left[$$
\begin{array}{c}
X^{i} \\
\partial X^{i}
\end{array}
$$\right], \mathscr{X}^{H}:\left[$$
\begin{array}{c}
X^{i} \\
-\Gamma_{s}^{i} X^{s}
\end{array}
$$\right] .
\]

Let G be a Riemannian metric on M that is a tensor field of type (0,2) with components with respect to $\left(x^{i}\right)$ given by $g_{i j}(i, j=1,2, \ldots n)$. It has been customary to write $d s^{2}=g_{i j} d x^{i} d x^{j}$. The complete lift of G may be expressed in terms of the induced local co-ordinate system $\left(x^{i}, y^{i}\right)$ of $T(M)$ by a ($2 n \times 2 n$) matrix [2]:

$$
G^{c}:\left[\begin{array}{cc}
\frac{\partial g_{i j}}{\partial x^{k}} & y^{k} \tag{2}\\
g_{i j} \\
g_{i j} & 0
\end{array}\right]
$$

In 1958 [5] S. Sasaki defined on the manifold $T(M)$ the Riemannian metric G^{L} as follows:

$$
\begin{equation*}
\boldsymbol{d} s^{2}=g_{i j} d x^{i} d x^{j}+g_{i j} \delta y^{i} \delta y^{j} \tag{3}
\end{equation*}
$$

with respect to the lifted base vectors $e_{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{H} e_{\bar{i}}=\left(\frac{\partial}{\partial x^{i}}\right)^{V}(\bar{i}=i+n)$, where $\delta x^{i}=\left(d x^{i}\right)^{V}$ and $\delta y^{i}=d y^{i}+\Gamma_{s m}^{i} y^{s} d x^{m}=\left(d x^{i}\right)^{H}$. Then G^{L} can be expressed by a ($2 n \times 2 n$) matrix

$$
\left[\begin{array}{cc}
g_{i j} & 0 \\
0 & g_{i j}
\end{array}\right]
$$

The components of this metric with respect to $\left(x^{i}, y^{i}\right)$ are

$$
\bar{G}_{I J}:\left[\begin{array}{cc}
g_{i j}+\Gamma_{i}^{s} \Gamma_{s}^{t} g_{s t} & \Gamma_{i}^{s} g_{s j} \tag{4}\\
\Gamma_{j}^{s} g_{s i} & g_{i j}
\end{array}\right]
$$

The metric G^{L} satisfies the following conditions [4]:

$$
\begin{align*}
& G^{L}\left(X^{H}, Y^{H}\right)=g(X, Y) \circ \pi \\
& G^{L}\left(X^{V}, Y^{V}\right)=g(X, Y) \circ \pi \tag{5}\\
& G^{L}\left(X^{H}, Y^{V}\right)=G^{L}\left(X^{V}, Y^{H}\right)=0
\end{align*}
$$

where $g(X, Y)$ represents the inner product in M itself. S. SASAKI calculated
the corresponding Christoffel symbols:

$$
\begin{align*}
& \bar{\Gamma}_{i j}^{q}=\frac{1}{2}\left(R_{0 i s}^{q} \Gamma_{j}^{s}+R_{0 j s}^{q} \Gamma_{i}^{s}\right)+\Gamma_{i j}^{q} \\
& \bar{\Gamma}_{\overline{i j}}^{q}=\frac{1}{2} R_{0 j i}^{q} \\
& \bar{\Gamma}_{i \bar{j}}^{q}=\frac{1}{2} R_{0 i j}^{q} \\
& \bar{\Gamma}_{\overline{i j}}^{q}=0 \tag{6}\\
& \bar{\Gamma}_{i j}^{\bar{q}}=\partial \Gamma_{i j}^{q}-\frac{1}{2} \Gamma_{\Gamma}^{q}\left(R_{0 i s}^{r} \Gamma_{j}^{s}+R_{0 j s}^{r} \Gamma_{i}^{s}\right) \\
& \bar{\Gamma}_{\overline{i j}}^{\bar{q}}=\Gamma_{i j}^{q}+\frac{1}{2} R_{0 i j}^{m} \Gamma_{m}^{q} \\
& \bar{\Gamma}_{i \bar{j}}^{\bar{q}}=\Gamma_{i j}^{q}+\frac{1}{2} R_{0 j i}^{m} \Gamma_{m}^{q} \\
& \bar{\Gamma}_{\bar{i}}^{\bar{q}}=0
\end{align*}
$$

with respect to the induced local co-ordinate system $\left(x^{i}, y^{i}\right)$ of $T(M)$, where $\bar{i}=i+n$ refer to $y^{i}, T_{i}^{q}=y^{j} I_{j i}^{q}$ and if $R_{k i j}^{q}$ denote the components of the curvature tensor then $R_{0 i j}^{q}=y^{k} R_{k i j}^{q}$.

In a similar manner as S. SASAKI did in (3'), we define three metrics on $T(M)$ by

$$
\left[\begin{array}{cc}
0 & g_{i j} \\
g_{i j} & 0
\end{array}\right],\left[\begin{array}{cc}
g_{i j} & g_{i j} \\
g_{i j} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & g_{i j} \\
g_{i j} & g_{i j}
\end{array}\right]
$$

with respect to the basis e_{i}, e_{i}.
Proposition 1. Suppose a Riemannian metric on $T(M)$ to be given by
or else by the matrix

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} \delta y^{j}+g_{i j} \delta y^{i} d x^{j} \tag{7}
\end{equation*}
$$

$$
\left[\begin{array}{cc}
0 & g_{i j} \tag{}\\
g_{i j} & 0
\end{array}\right]
$$

with respect to the basis $e_{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{H}, e_{\bar{i}}=\left(\frac{\partial}{\partial x^{i}}\right)^{V}(\bar{i}=i+n)$. Then this metric coincides with the complete lift of metric G defined on M.

Proof. Substituting $\delta y^{i}=d y^{i}+\Gamma_{t m}^{i} y^{t} d x^{m}$ into (7), an expression of the form $d s^{2}=\widetilde{G}_{I J} d x^{I} d x^{J}(I, J=1,2, \ldots 2 n)$ is obtained. In terms of the induced
local co-ordinate system, the components $\widetilde{G}_{I J}$ are seen immediately to be:

$$
\widetilde{G}_{I J}:\left[\begin{array}{cc}
g_{i s} \Gamma_{j}^{s}+g_{s j} \Gamma_{i}^{s} & g_{i j} \tag{8}\\
g_{i j} & 0
\end{array}\right]
$$

where $\Gamma_{j}^{s}=y^{t} \Gamma_{t j}^{s}$. For the Riemannian connection $\nabla g=0$ implies

$$
\frac{\partial g_{i j}}{\partial x^{k}}=\Gamma_{k i}^{m} g_{m j}+\Gamma_{k j}^{m} g_{i m}
$$

therefore by (2) the matrix (8) coincides with the matrix of G^{C}.
The metric G^{C} has the following properties [4]:

$$
\begin{align*}
& G^{C}\left(X^{V}, Y^{V}\right)=0 \\
& G^{C}\left(X^{V}, Y^{H}\right)=G^{C}\left(X^{H}, Y^{V}\right)=g(X, Y) \circ \pi \\
& G^{C}\left(X^{C}, Y^{C}\right)=\left((g(X, Y))^{C}\right. \tag{9}\\
& G^{C}\left(X^{H}, Y^{H}\right)=0
\end{align*}
$$

Proposition 2. The components of the torsion-free Riemannian connection of the metric G^{C} on the manifold $T(M)$ coincide with the components of the complete lift of the linear connection defined on the manifold M.

Proof. Components of the connection are calculated with respect to the local co-ordinate system $\left(x^{i}, y^{i}\right)$ of the manifold $T(M)$

$$
\begin{equation*}
\Gamma_{I J}^{Q}=\frac{1}{2} G^{K Q}\left(\frac{\partial G_{K J}}{\partial \xi^{I}}+\frac{\partial G_{I K}}{\partial \xi^{J}}-\frac{\partial G_{I J}}{\partial \xi^{K}}\right) \tag{10}
\end{equation*}
$$

where $I, J, K, Q=1,2, \ldots, 2 n . G_{I J}$ is replaced by $\widetilde{G}_{I J}$ from (8), and $G^{K Q}$ by the contravariant components of the metric G^{C}, obtained from $\widetilde{G}_{J Q} \widetilde{G}^{Q K}=$ $=\delta_{J}^{K}$. Hence

$$
\widetilde{G}^{Q K}:\left[\begin{array}{cc}
0 & g^{q k} \tag{11}\\
g^{q k} & -\Gamma_{s}^{q} g^{s k}
\end{array}-\Gamma_{s}^{k} g^{s q}\right],
$$

where $g^{q k}$ are the contravariant components of the metric given on the manifold M.

Using the expression for the components of the curvature tensor

$$
\begin{equation*}
R_{0 i j}^{q}=\frac{\partial \Gamma_{j}^{q}}{\partial x^{i}}-\frac{\partial \Gamma_{i}^{q}}{\partial x^{j}}+\Gamma_{j}^{m} \Gamma_{i m}^{q}-\Gamma_{i}^{m} \Gamma_{j m}^{q} \tag{12}
\end{equation*}
$$

where $R_{0 i j}^{q}=y^{k} R_{k i j}^{q}$ and $\Gamma_{i}^{q}=y^{j} \Gamma_{j i}^{q}$.
For the indices $q, \bar{i}, j(10)$ becomes

$$
2 \tilde{\Gamma}_{\bar{i} j}^{q}=g^{k q}\left[\frac{\partial}{\partial y^{i}} g_{k j}-\frac{\partial}{\partial y^{k}} g_{i j}\right]=0
$$

and similarly

$$
2 \Gamma_{i \bar{j}}^{q}=g^{k q}\left[\frac{\partial}{\partial y^{j}} g_{i k}-\frac{\partial}{\partial y^{k}} g_{i j}\right]=0 .
$$

Substituting the components of the indices \bar{q}, \bar{i}, j into (10), we have

$$
\begin{aligned}
& 2 \widetilde{\Gamma}_{\bar{i} j}^{\bar{q}}=g^{k q}\left[\frac{\partial}{\partial y^{i}}\left(g_{k s} \Gamma_{j}^{s}+g_{s j} \Gamma_{k}^{s}\right)+\frac{\partial}{\partial x^{j}} g_{i k}-\frac{\partial}{\partial x^{k}} g_{i j}\right]- \\
& \quad-\left(\Gamma_{s}^{q} g^{s k}+\Gamma_{s}^{k} g^{s q}\right)\left(\frac{\partial}{\partial y^{i}} g_{k j}-\frac{\partial}{\partial y^{k}} g_{i j}\right)=g^{k q}\left(g_{k s} \Gamma_{j i}^{s}+g_{s k} \Gamma_{i j}^{s}\right)=2 \Gamma_{i j}^{q} .
\end{aligned}
$$

For the indices \bar{q}, i, \bar{j} we obtain

$$
\begin{aligned}
2 \widetilde{\Gamma}_{i \bar{j}}^{\bar{q}} & =g^{k q}\left[\frac{\partial}{\partial x^{i}} g_{k j}+\frac{\partial}{\partial y^{j}}\left(g_{i s} \Gamma_{k}^{s}+g_{s k} \Gamma_{i}^{s}\right)-\frac{\partial}{\partial x^{k}} g_{i j}\right]- \\
& -\left(\Gamma_{s}^{q} g^{s k}+\Gamma_{s}^{k} g^{s q}\right)\left[\frac{\partial}{\partial y^{j}} g_{i k}-\frac{\partial}{\partial y^{k}} g_{i j}\right]= \\
& =g^{k q}\left(g_{k r} I_{j i}^{r}+g_{s k} \Gamma_{i j}^{s}\right)=2 \Gamma_{i j}^{q},
\end{aligned}
$$

Now $\widetilde{\Gamma}_{i j}^{q}$ will be calculated as follows:

$$
\begin{aligned}
2 \widetilde{\Gamma}_{i j}^{q} & =g^{k q}\left[\frac{\partial}{\partial x^{i}} g_{k j}+\frac{\partial}{\partial x^{j}} g_{i k}-\frac{\partial}{\partial y^{k}}\left(g_{i s} \Gamma_{j}^{s}+g_{s j} \Gamma_{i}^{s}\right)\right]= \\
& =g^{k q}\left(g_{k s} \Gamma_{j i}^{s}+g_{s k} \Gamma_{i j}^{s}\right)= \\
& =2 \Gamma_{i j}^{q} .
\end{aligned}
$$

In a similar way:

$$
\begin{aligned}
2 \widetilde{\Gamma}_{i j}^{q} & =g^{k q}\left[\frac{\partial}{\partial x^{i}}\left(g_{k s} \Gamma_{j}^{s}+g_{s j} \Gamma_{k}^{s}\right)+\frac{\partial}{\partial x^{j}}\left(g_{i s} \Gamma_{k}^{s}+g_{s k} \Gamma_{i}^{s}\right)-\right. \\
& \left.-\frac{\partial}{\partial x^{k}}\left(g_{i s} \Gamma_{j}^{s}+g_{s j} \Gamma_{i}^{s}\right)\right]+ \\
& +\left(-\Gamma_{s}^{q} g^{s k}-\Gamma_{s}^{k} g^{s q}\right)\left[\frac{\partial}{\partial x^{i}} g_{k j}+\frac{\partial}{\partial x^{j}} g_{i k i}-\frac{\partial}{\partial y^{k}}\left(g_{i m} \Gamma_{j}^{m}+g_{m j} \Gamma_{i}^{m}\right)\right]= \\
& =g^{k q}\left[\left(\frac{\partial \Gamma_{k}^{s}}{\partial x^{i}}-\frac{\partial \Gamma_{i}^{s}}{\partial x^{k}}+\Gamma_{k}^{r} \Gamma_{r i}^{s}-\Gamma_{i}^{r} \Gamma_{r k}^{s}\right) g_{s j}+\right. \\
& \left.+\left(\frac{\partial \Gamma_{k}^{s}}{\partial x^{j}}-\frac{\partial \Gamma_{j}^{s}}{\partial x^{k}}+\Gamma_{k}^{r} \Gamma_{r j}^{s}-\Gamma_{j}^{r} \Gamma_{r k}^{s}\right) g_{i s}\right]+ \\
& +g^{k q}\left[g_{k r} \Gamma_{s i}^{r} \Gamma_{j}^{s}+g_{r k} \Gamma_{s j}^{r} \Gamma_{i}^{s}+\frac{\partial \Gamma_{j}^{s}}{\partial x^{i}} g_{k s}+\frac{\partial \Gamma_{i}^{s}}{\partial x_{j}} g_{s k}\right)- \\
& -\Gamma_{s}^{q} g^{s k} 2 g_{k r} \Gamma_{i j}^{r}= \\
& =R_{0 i j}^{q}+R_{0 j i}^{q}+2 \Gamma_{i j}^{q} .
\end{aligned}
$$

Summarizing

$$
\begin{align*}
& \bar{\Gamma}_{i j}^{q}=\widetilde{\Gamma}_{i \bar{j}}^{\bar{q}}=\widetilde{\Gamma}_{\bar{i}}^{q}=\Gamma_{l j}^{q}, \widetilde{\Gamma}_{i j}^{\bar{q}}=\partial \Gamma_{i j}^{q}, \tag{13}\\
& \widetilde{\Gamma}_{i j}^{q}=\widetilde{\Gamma}_{i \bar{j}}^{q}=\widetilde{\Gamma}_{\bar{i} \bar{i}}^{q}=\widetilde{\Gamma}_{\bar{i} \bar{q}}^{\bar{q}}=0 .
\end{align*}
$$

These components coincide with the components of the connection ∇^{c} defined in [2] as:

$$
\nabla_{\mathfrak{a}}^{c} \mathfrak{Y}^{c}=\left(\nabla_{\mathfrak{a}} \mathfrak{Y}\right)^{c} .
$$

Proposition 3. Suppose the metric G^{S} on the manifold $T(M)$ to be given by

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} d x^{j}+g_{i j} d x^{i} \delta y^{j}+g_{i j} \delta y^{i} d x^{i} \tag{14}
\end{equation*}
$$

or else by the matrix

$$
\left[\begin{array}{cc}
g_{i j} & g_{i j} \\
g_{i j} & 0
\end{array}\right]
$$

With respect to the basis $e_{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{H}, e_{\bar{i}}=\left(\frac{\partial}{\partial x^{i}}\right)^{V}$. Then the covariant and contravariant components of G^{S} in terms of the local co-ordinate system $\left(x^{i}, y^{i}\right)$ are:

$$
\widehat{G}_{I J} ;\left[\begin{array}{cc}
g_{i j}+\partial g_{i j} & g_{i j} \tag{15}\\
g_{i j} & 0
\end{array}\right]
$$

and

$$
\widehat{G}^{Q K}:\left[\begin{array}{cc}
0 & g^{q k} \tag{16}\\
g^{q k} & -g^{q k}+\partial g^{q k}
\end{array}\right]
$$

respectively, where $\partial g_{i j}=\frac{\partial g_{i j}}{\partial x^{k}} y^{k}$ and $\quad \partial g^{q k}=\frac{\partial g^{q k}}{\partial x^{i}} y^{i}$.
Proof. The covariant components $\hat{G}_{I J}$ can be calculated in a similar way as the $\widetilde{G}_{I J}$ in Proposition 1, and the contravariant components $\widehat{G}^{Q K}$ from $\hat{G}_{J Q} \hat{G}^{Q K}=\delta_{J}^{K}$.

Proposition 4. The metric G^{S} defined on the manifold $T(M)$ has the following properties:

$$
\begin{align*}
& G^{S}\left(X^{V}, Y^{V}\right)=0 \\
& G^{S}\left(X^{V}, Y^{H}\right)=G^{S}\left(X^{H}, Y^{V}\right)=g(X, Y) \circ \pi \\
& G^{S}\left(X^{H}, Y^{H}\right)=g(X, Y) \circ \pi \tag{17}\\
& G^{S}\left(X^{C}, Y^{C}\right)=g(X, Y) \circ \pi+(g(X, Y))^{C}
\end{align*}
$$

Proof. To prove (17) the left sides in a local coordinate system (x^{i}, y^{i}) of $T(M)$ will be calculated, e.g. the last inner product is the following:

$$
\left[\begin{array}{ll}
X^{i} & \partial X^{i}
\end{array}\right]\left[\begin{array}{cc}
g_{i j}+\partial g_{i j} & g_{i j} \\
g_{i j} & 0
\end{array}\right]\left[\begin{array}{c}
Y^{j} \\
\partial Y^{j}
\end{array}\right]=g_{i j} X^{i} Y^{j}+\partial\left(g_{i j} X^{i} Y^{j}\right)
$$

Making use of $f^{C}=f_{i} y^{i}, f \in \mathscr{S}_{0}^{0}(M)$ (see [2]), leads to the stated result.

According to Proposition 4, in the metric G^{S} the vertical vectors are zero. The vertical lift of a vector is orthogonal to the horizontal lift of another if and only if the vectors themselves are orthogonal with respect to the metric ($g_{i j}$) in M. The length of a horizontal vector equals the length of the vector obtained by the projection π.

Proposition 5. The components of the torsion-free Riemannian connection of the metric G^{S} on the manifold $T(M)$ are as follows:

$$
\begin{align*}
& \widehat{\Gamma}_{i j}^{q}=\Gamma_{i j}^{q}, \quad \hat{\Gamma}_{i j}^{q}=\widehat{\Gamma}_{i \bar{j}}^{q}=\widehat{\Gamma}_{i \bar{i}}^{q}=0 \tag{18}\\
& \widehat{\Gamma}_{i j}^{\bar{q}}=\partial \Gamma_{i j}^{q}, \quad \widehat{\Gamma}_{\overline{i j}}^{q}=\widehat{\Gamma}_{i \bar{j}}^{q}=\Gamma_{i j}^{q}, \quad \widehat{\Gamma}_{i \bar{i}}^{\bar{q}}=0 .
\end{align*}
$$

Proof. The components can be calculated from (10) similarly as in the proof of Proposition 2.

By Proposition 5, components of the connections of the metric G^{S} and G^{C} coincide, consequently the geodetics are the same in both cases.

Proposition 6. Suppose the metric G^{Z} on the manifold $T(M)$ to be given by

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} \delta y^{j}+g_{i j} \delta y^{i} d x^{j}+g_{i j} \delta y^{i} \delta y^{j} \tag{19}
\end{equation*}
$$

or else by the matrix

$$
\left[\begin{array}{cc}
0 & g_{i j} \\
g_{i j} & g_{i j}
\end{array}\right]
$$

with respect to the basis $e_{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{H}, e_{i}^{\bar{i}}=\left(\frac{\partial}{\partial x^{i}}\right)^{V}$. Then the covariant and contravariant components of G in terms of the local co-ordinate system $\left(x^{i}, y^{i}\right)$ are

$$
\breve{G}_{I J}:\left[\begin{array}{cc}
\partial g_{i j}+\Gamma_{i}^{s} \Gamma_{j}^{t} g_{s i} & g_{i j}+\Gamma_{i}^{s} g_{s j} \tag{20}\\
g_{i j}+\Gamma_{j}^{s} g_{i s} & g_{i j}
\end{array}\right]
$$

and

$$
\breve{G}^{Q K}:\left[\begin{array}{cc}
-g^{q k} & g^{q k}+\Gamma_{s}^{k} g^{s q} \tag{21}\\
g^{q k}+\Gamma_{s}^{q} g^{s k} & \partial g^{q k}-\Gamma_{s}^{q} \Gamma_{t}^{k} g^{s t}
\end{array}\right]
$$

respectively.
Proof. Similar to that of Proposition 3.
Proposition 7. The metric G^{Z} defined on the manifold $T(M)$ has the following properties:

$$
\begin{align*}
& G^{Z}\left(X^{V}, Y^{V}\right)=g(X, Y) \circ \pi \\
& G^{Z}\left(X^{H}, Y^{V}\right)=G^{Z}\left(X^{V}, Y^{H}\right)=g(X, Y) \circ \pi \tag{22}\\
& G^{Z}\left(X^{H}, Y^{H}\right)=0
\end{align*}
$$

Proof. Similar to that of Proposition 4.

By words, in the metric G^{Z} the length of a vertical vector equals the length of the vector obtained by the projection π. The horizontal lift of a vector is orthogonal to the vertical lift of another if and only if the vectors themselves are orthogonal in the metric $\left(g_{i j}\right)$. Moreover, each horizontal vector is zero.

Proposition 8. The components of the torsion-free Riemannian connection of the metric G^{Z} on the manifold $T(M)$ are as follows:

$$
\begin{align*}
& \check{\Gamma}_{i j}^{q}=\Gamma_{i j}^{q}-\frac{1}{2}\left(R_{0 i t}^{q} \Gamma_{j}^{t}+R_{0 j t}^{q} \Gamma_{i}^{t}\right) \\
& \check{\Gamma}_{i j}^{q}=\frac{1}{2} R_{0 i j}^{q} \\
& \check{\Gamma}_{i \bar{j}}^{q}=\frac{1}{2} R_{0 j i}^{q} \\
& \check{\Gamma}_{i \bar{i}}^{q}=0 \tag{23}\\
& \check{\Gamma}_{i j}^{q}=\partial \Gamma_{\bar{i} j}^{q}+\frac{1}{2} \Gamma_{m}^{q}\left(\Gamma_{j}^{t} R_{0 i t}^{m}+\Gamma_{i}^{t} R_{0 j t}^{m}\right)+\frac{1}{2}\left(R_{0 i t}^{q} \Gamma_{j}^{t}+R_{0 j t}^{q} \Gamma_{i}^{t}\right) \\
& \check{\Gamma}_{\bar{i} j}^{\bar{q}}=\Gamma_{\overline{i j}}^{q}+\frac{1}{2}\left(R_{0 j i}^{q}+\Gamma_{m}^{q} R_{0 j i}^{m}\right) \\
& \check{\Gamma}_{i \bar{j}}^{\bar{q}}=\Gamma_{i j}^{q}+\frac{1}{2}\left(R_{0 i j}^{q}+\Gamma_{m}^{q} R_{0 i j}^{m}\right) \\
& \check{\Gamma}_{i j}^{\bar{q}}=0 .
\end{align*}
$$

Proof. Similar to that of Proposition 2 by a somewhat longer calculation.

Summary

Three metrics are discussed which can be defined on the tangent bundle $T(M)$, where M is a connected Riemannian space.

Components of the torsion-free Riemannian connection of these metrics G^{C}, G^{S} and G^{Z} on the manifold $T(M)$ are calculated.

References

1. Kobaxashi, S.-Nomizu: Foundations of differential geometry I. Interscience, 1963.
2. Yano, K.-Kobayashi, S.: Prolongations of tensor fields and connections to tangent bundles,
I. J. Math. Soc. Japan 18 (1966), 194-210.
3. Yano, K.-Ishifara, S.: Horizontal lifts of tensor fields and connections to tangent bundles, J. Math. Mech. 16 (1967), 1015-1029.
4. Yano, K.-Davies, E. T.: Metrics and connections in the tangent bundle, Ködai Math. Sem. Rep., 23 (1971), 493-504.
5. Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. 10 (1958), 338-354.

Márta Szilvási-Nagy, H-1521 Budapest

[^0]: * The results of this paper are taken from the author's doctoral dissertation, submitted to the Eötvös Loránd University in 1973.

