GENERALIZATION OF A THEOREM BY P. HARTMAN AND A. WINTNER

By
G. Molnár-Sáska
Department of Descriptive Geometry, Technical University, Budapest
Received: June 16, 1977
Presented by Prof. Dr. Gy. Strommer

Theorems of standard differential geometry are usually stated under strong sufficient conditions. In order to reduce conditions in the fundamental theorem of 3 -dimensional space curves a modified treatment was given by P. Hartman and A. Wintiner [1]. Their result will be generalized in this paper for higher dimensions.

1. Basic facts and definitions

The foundation of differential geometry of curves in n-dimensional spaces was given by W. Blaschke [2].

The definitions of higher curvatures will be reviewed here as they were introduced by H. Gluck [3] and [4] and earlier but in a less concise form by Egerváry [5]. A bit of modification will be given here too by introducing signed higher curvatures.

Let V^{n} be the oriented n-dimensional Euclidean vector space formed by vectors of the n-dimensional Euclidean space E^{n} and $A^{p}\left(V^{n}\right)$ for $p=1, \ldots, n$ the $\binom{n}{p}$-dimensional Euclidean vector space formed by the p-vectors over V^{n} with the inner product induced by that of V^{n}.

Let $\mathbf{x}=\mathbf{x}(\tau)$ be a vector-valued function which represents a curve $C \subset E^{n}$ in a well-known sense, i.e. $\mathrm{x}=\mathrm{x}(\tau)=\overrightarrow{O P}(\tau)$, where τ runs over an interval I of real numbers, $P(\tau)$ is the point on C which belongs to τ and $O \in E^{n}$ is a fixed point considered as the origin of the vectors.

The p-dimensional osculating subspace L_{p} to the curve at a point $P(\tau)$ is defined as spanned by the linearly independent derivative vectors $\mathbf{x}^{(i)}(\tau)$, $i=1, \ldots, p$, and the p-th higher curvature χ_{p}, as the measure of the rate of turning of the appropriate p-dimensional osculating subspaces with respect to the are length where $p=1, \ldots, n-1$.

This latter definition can be written therefore in the following form

$$
\varkappa_{p}=\frac{1}{\left\|\mathbf{x}^{\prime}(\tau)\right\|}\left\|\frac{d}{d \tau} \mathbf{n}_{p}^{0}\right\|, p=1, \ldots, n-1
$$

where

$$
\mathbf{n}_{p}^{0}=\frac{\mathbf{x}^{\prime}(\tau) \wedge \mathbf{x}^{\prime \prime}(\tau) \wedge \ldots \wedge \mathbf{x}^{(p)}(\tau)}{\left\|\mathbf{x}^{\prime}(\tau) \wedge \mathbf{x}^{\prime \prime}(\tau) \wedge \cdots \wedge \mathbf{x}^{(p)}(\tau)\right\|}
$$

Evidently the above definitions work for $p=1, \ldots, n-1$ if $\mathbf{x}=\mathbf{x}(\tau)$ is of class C^{n} and if the derivative vectors $\mathbf{x}^{(i)}(\tau)(i=1, \ldots, n-1)$ are linearly independent at every $\tau \in I$. The first assumption can, however, be replaced by a little more general one as the following lemma shows.

Lemma. Let $\mathrm{x}=\mathrm{x}(\tau)$ be a vector-valued function of class C^{n-1} such that its derivatives $\mathbf{x}^{(i)}(\tau)$ for $i=1, \ldots, n-1$ are linearly independent vectors at every $\tau \in I$. Assume further \mathbf{v}_{n-1} to be differentiable at every $\tau \in I$, where $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is the so-called Frenet frame, which is obtained at τ by applying the Gram-Schmidt orthonormalization process to the linearly independent vectors $\mathbf{x}^{\prime}(\tau), \mathbf{x}^{\prime \prime}(\tau), \ldots, \mathbf{x}^{n-1}(\tau)$ and the last element \mathbf{v}_{n} is chosen so that the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ form a right-hand orthonormal base for V^{n}. Then all the higher curvatures exist at every $\tau \in I$.

Proof. The differentiability of \mathbf{n}_{p}^{0} is evident for $p=1, \ldots, n-2$. In order to compute χ_{n-1}, the derivative vectors of $\mathbf{x}(\tau)$ will be given by linear combinations

$$
\mathbf{x}^{(i)}=\sum_{j=1}^{i} \lambda_{i j} \mathbf{v}_{j} \quad \text { for } \quad i=1, \ldots, n-1
$$

where $\lambda_{i i}>0(i=1, \ldots, n-1)$ because of the uniqueness of the orthonormalization process.

On account of well-known properties of the exterior product it can be written:

$$
\mathbf{n}_{n-1}^{0}=\frac{\mathbf{x}^{\prime} \wedge \mathrm{x}^{\prime \prime} \wedge \cdots \wedge \mathbf{x}^{(n-1)}}{\left\|\mathbf{x}^{\prime} \wedge \mathrm{x}^{\prime \prime} \wedge \cdots \wedge \mathbf{x}^{(n-1)}\right\|}=\mathbf{v}_{1} \wedge \mathbf{v}_{2} \wedge \cdots \wedge \mathbf{v}_{n-1}
$$

On the other hand the differentiability of all $\mathbf{v}_{j}(j=1, \ldots, n)$ is easily seen to be assured by the assumptions of the lemma.

Thus

$$
\varkappa_{n-1}=\frac{1}{\left\|\mathbf{x}^{\prime}(\tau)\right\|}\left\|\frac{d}{d \tau}\left(\mathbf{v}_{1} \wedge \mathbf{v}_{2} \wedge \cdots \wedge \mathbf{v}_{n-1}\right)\right\|
$$

exists as well and the lemma is proved.
In addition, the convenient expressions of the higher curvatures due to H. Gluck will be applied. Considering the orthonormality relations among $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$, the following derivational formulae (the so-called Frenet equations) hold at every

$$
\begin{aligned}
& \tau \in I \\
& \mathbf{v}_{1}^{\prime}=\frac{c_{2}}{c_{1}} \mathbf{v}_{2}, \mathbf{v}_{i}^{\prime}=-\frac{c_{i}}{c_{i-1}} \mathbf{v}_{i-1}+\frac{c_{i+1}}{c_{i}} \mathbf{v}_{i+1}, \text { for } i=2, \ldots, n-2
\end{aligned}
$$

as well as

$$
\mathbf{v}_{n-1}^{\prime}=-\frac{c_{n-1}}{c_{n-2}} \mathbf{v}_{n-2}+c \mathbf{v}_{n} \quad \text { and } \quad \mathbf{v}_{n}^{\prime}=-c \mathbf{v}_{n-1}
$$

with suitably chosen coefficient c.
Notice that $c_{i}=\lambda_{i i}>0(i=1, \ldots, n-1)$ holds in these equations.
Now let us differentiate \mathbf{n}_{p}^{0}. The validity of the ordinary rule for differentiating a product, the alternating character of the exterior multiplication and the above derivational formulae give:

$$
\frac{d}{d \tau} \mathbf{n}_{p}^{0}=\mathbf{v}_{1} \wedge \mathbf{v}_{2} \wedge \ldots \wedge \mathbf{v}_{p}^{\prime}=\frac{c_{p+1}}{c_{p}}\left(\mathbf{v}_{1} \wedge \mathbf{v}_{2} \wedge \ldots \wedge \mathbf{v}_{p-1} \wedge \mathbf{v}_{p+1}\right)
$$

for $p=1, \ldots, n-2$ and

$$
\frac{d}{d \tau} \mathbf{n}_{n-1}^{0}=\mathbf{v}_{1} \wedge \mathbf{r}_{2} \wedge \cdots \wedge \mathbf{v}_{n-1}^{\prime}=c\left(\mathbf{v}_{1} \wedge \mathbf{r}_{2} \wedge \ldots \wedge \mathbf{v}_{n-2} \wedge \mathbf{v}_{n}\right)
$$

The preceding observations yield now:

$$
x_{p}=\left|\frac{1}{c_{1}} \cdot \frac{c_{p+1}}{c_{p}}\right|, \text { where } p=1, \ldots, n-2 \text { and } x_{n-1}=\left|\frac{c}{c_{1}}\right|
$$

Consider now the quantities $\mu_{p}, p=1, \ldots, n-2$ defined by

$$
\mu_{p}=\frac{1}{c_{1}} \frac{c_{p+1}}{c_{p}}=\varkappa_{p}>0 \text { and } \mu_{n-1}=\frac{c}{c_{1}}
$$

as signed higher curvatures in accordance with the standard theory of 3-dimensional space curves.

In the case where the vector-valued function representing the curve is the parametrization by arc length, i.e. $c_{1}=1$ the coefficients in the Frenet equations are equal to the signed higher curvatures.

2. The generalized theorem

The following theorem is the generalization of a fundamental theorem of 3-dimensional space curves [1].

Theorem. Let $k_{1}(s), k_{2}(s), \ldots, k_{n-2}(s)$ be on a closed interval I positive real-valued functions of class $C^{n-3}, C^{n-4}, \ldots, C^{0}$ respectively and $k_{n-1}(s)$ an arbitrary real-valued C^{0}-function on the same interval.

Then there exists a curve $C \subset E^{n}$ represented by $\mathrm{x}=\mathrm{x}(s)$ of class C^{n-1} on I for which s means arc-length and $k_{1}(s), k_{2}(s), \ldots, k_{n-1}(s)$ are the signed
higher curvatures at every $s \in I$. The curve is uniquely determined up to an orientation preserving isometry of E^{n}.

Proof. It is a generalization of the classical one. The following system of linear differential equations

$$
\begin{aligned}
& \mathbf{u}_{1}^{\prime}=k_{1}(s) \mathbf{u}_{2} \\
& \mathbf{u}_{j}^{\prime}=-k_{j-1}(s) \mathbf{u}_{j-1}+k_{j}(s) \mathbf{u}_{j+1} \text { for } j=2, \ldots, n-1
\end{aligned}
$$

and

$$
\mathbf{u}_{n}^{\prime}=-k_{n-1}(s) \mathbf{u}_{n-1}
$$

consists of n^{2} equationsfor the co-ordinates $u_{j}^{i},(i, j=1, \ldots, n)$ after introducing a fixed right-hand orthonormal base $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ of V^{n}, i.e. $\mathbf{u}_{j}=u_{j}^{1} \mathbf{e}_{1}+$ $+u_{j}^{2} \mathbf{e}_{2}+\ldots+u_{j}^{n} \mathrm{e}_{n}$ holds for $j=1,2, \ldots, n$.

Let $\mathbf{W}=w_{i j}$ denote the n-rowed skew-symmetric matrix where $w_{i j}=k_{i}(s)$ for $j=i+1, i=1, \ldots, n-1$ and $w_{i j}=0$ for $j=i+2, \ldots, n$, $i=1, \ldots, n-2$.

If \mathbf{U} denotes the matrix whose consecutive columns are $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ then the above system of differential equations can be written in the simple matrix form

$$
\mathbf{U}^{\prime}=-\mathbf{U W} \text { or }\left(\mathbf{U}^{*}\right)^{\prime}=\mathbf{W} \mathbf{U}^{*}
$$

where asterisks denote transposition.
Let the initial conditions be chosen so that, at an initial value $s=s_{0}$ the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ form a right-hand orthonormal system. Let now $\mathbf{u}_{j}\left(s_{0}\right)=\mathbf{e}_{j}$ for $j=1, \ldots, n$.

Since the function UW is continuous on a closed ($n^{2}+1$)-dimensional square domain where $s \in I,\left|u_{j}^{i}\right| \leq 1$ for $i, j=1, \ldots, n$, the existence of a solution satisfying the given initial conditions is assured ([6], pp. 85-86).

On the other hand

$$
\left(\mathbf{U U}^{*}\right)^{\prime}=-\mathbf{U W} \mathbf{U}^{*}+\mathbf{U W} \mathbf{U}^{*}=0
$$

Hence $\mathbf{U U}^{*}=\delta_{i j}=$ const. holds at every' $s \in I$, that is, the vector-functions $\mathbf{u}_{1}(s), \mathbf{u}_{2}(s), \ldots, \mathbf{u}_{n}(s)$ satisfying the differential equations and the initial conditions form an orthonormal system at every $s \in I$.

According to the usual proof of the uniqueness let $\mathbf{u}_{j}(s)$ and $\tilde{\mathbf{u}}_{j}(s)$ be two solutions of the Frenet equations for which $\mathbf{u}_{j}\left(s_{0}\right)=\tilde{\mathbf{u}}_{j}\left(s_{0}\right)(j=1, \ldots, n)$.

It is easy to see that the derivative of the scalar-function $f(s)=\sum_{j=1}^{n}\left\langle\mathbf{u}_{j}(s), \tilde{\mathbf{u}}_{j}(s)\right\rangle$ is identically zero.

Since $f(s)=f\left(s_{0}\right)=n$, and $\left|\left\langle\mathbf{u}_{j}(s), \tilde{\mathbf{u}}_{j}(s)\right\rangle\right| \leq 1 \quad \mathbf{u}_{j}(s)=\tilde{\mathbf{u}} j(s)$ holds for every $s \in I$ and $j=1, \ldots, n$.

Let now $\mathrm{x}(s)=\int_{s_{0}}^{s} \mathbf{u}_{1}(s) d s$ be considered on I as a representation of a curve $C \subset E^{n}$ after having fixed the point O. The curve passes through O at the value s_{0}.

Evidently the arc-length between two points $P\left(s_{1}\right)$ and $P\left(s_{2}\right)$ on the curve is $\left|s_{1}-s_{2}\right|$.

Let us compute now the higher curvatures in points of C using vectorfunction representation. The higher derivatives of $x(s)$ can be obtained recursively as linear combinations of $\mathbf{u}_{1}(s), \mathbf{u}_{2}(s), \ldots, \mathbf{u}_{n}(s)$.

Applying the given conditions for $k_{j}(s)$ and $\mathbf{u}_{j}(s)(j=1, \ldots, n)$ the following are deduced

$$
\begin{aligned}
\mathbf{x}^{\prime} & =\mathbf{u}_{1} \\
\mathbf{x}^{(r)} & =\left(\lambda_{r-1,1}^{\prime}-k_{1} \lambda_{r-1,2}\right) \mathbf{u}_{1}+ \\
& +\sum_{j=2}^{n-1}\left(\lambda_{r-1, j}^{\prime}+k_{j-1} \lambda_{r-1, j-1}-k_{j} \lambda_{r-1, j+1}\right) \mathbf{u}_{j}+ \\
& +\left(\lambda_{r-1, n}^{\prime}+k_{n-1} \lambda_{r-1, n-1}\right) \mathbf{u}_{n} \text { for } \quad r=2, \ldots, n-1
\end{aligned}
$$

where $\lambda_{i j}$ is the coefficient of \mathbf{u}_{j} in the linear combination which gives $\mathbf{x}^{(i)}$.
Notice that $\lambda_{11}=1$ and $\lambda_{i i}=k_{1} k_{2} \ldots k_{i-1}>0$ for $i=2, \ldots, n-1$.
Returning to the previous notations $\lambda_{i i}=c_{i}$ for $i=1, \ldots, n-1$ the Frenet-frame can be made uniquely at every s since $x(s)$ is of class C^{n-1} and the vectors $\mathbf{x}^{\prime}(s), \mathbf{x}^{\prime \prime}(s), \ldots, \mathbf{x}^{(n-1)}(s)$ are linearly independent at $s \in I$.

Moreover $\mathbf{v}_{j}(s)=\mathbf{u}_{j}(s)$ holds for $j=1, \ldots, n$.
Now the higher curvatures according to their definitions can be given by

$$
\varkappa_{p}(s)=\left|\frac{1}{c_{1}} \cdot \frac{c_{p+1}}{c_{p}}\right|=k_{p}(s) \text { for } p=1, \ldots, n-2
$$

and
or

$$
\begin{aligned}
\varkappa_{n-1}(s) & =\left|k_{n-1}(s)\right| \\
\mu_{p}(s)=k_{p}(s) \quad \text { for } \quad p & =1, \ldots, n-1 .
\end{aligned}
$$

At last it is easy to see that a change of the initial conditions in the above differential equations represents only a motion, i.e. an orientation preserving isometry of E^{n}.

Summary

The fundamental theorem of 3 -dimensional Euclidean space curves states that a curve can be uniquely determined up to an orientation preserving isometry by two prescribed functions $k_{1}(s)$ and $k_{2}(s)$ which are the corvature and the torsion of the curve, respectively. The weakening of the differentiability requirements on the functions $k_{1}(s)$ and $k_{2}(s)$ has been studied by P. Hartman and A. Wintiner. Their result has been generalized here for curves in higher dimensional Euclidean spaces.

References

1. Hartman, P., Wintner, A.: On the fundamental equations of differential geometry. Amer. J. Math, 72 (1950), $757-774$.
2. Blaschike, W.: Frenets Formeln für den Raum von Riemann. Math. Zeitschr. 6 (1920), 94-99.
3. Gudecs, H.: Higher curvatures of curves in Euclidean spaces I. Amer. Math. Monthly 73 (1966), 699-704.
4. Glucs, H.: Higher curvatures of carves in Euclidean spaces II. Amer. Math. Monthly 74 (1967), 1049-1056.
5. Egervâry, E.: Über die Kurven des n-dimensionalen euklidischen Raumes. Math. Term. Tud. Értesító 59 (1940), 787-797.
6. Kамкке, E.: Differentialgleichungen I. Leipzig 1962.

Gábor Molnár-Sáska, H-1521 Budapest

