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Variational methods have been used in quantum mechanics from the 
very beginning. In the first papers of Schrodinger the problem of finding the 
energy levels of a particle in a potential field was stated as an eigenvalue prob­
lem. A variational principle for prohlems of this kind had been formulated 
mathematically long hefore the appearance of quantum mechanics. So-called 
direct methods (Ritz method) had also heen developed which allowed the 
approximate calculation of eigenvalues and eigenfunctions by starting from 
extremal properties. 

There exists, however, a large group of quantum mechanical problems 
where one has to deal ,dth the continuous spectrum of the energy operator 
and, correspondingly, there exists a variety of variational procedures which 
may be applied either to the exactly soluble problem of potential scattering 
or to many-body scattering problems. 

In several cases, however, a given quantum mechanical system is in 
a quasi-stationary state often called as decay-ing or resonance state where the 
constituents are bounded for a characteristic time (life-time) then merge into 
the continuum. One may divide the theoretical methods applied to these 
non-stationary staVe's into three categories: The first contains theories which 
treat the prohlem from the scattering point of view where the relevant quan­
tities are usually found from their relationship to the energ-y-dependent phase 
shift. The second contains theories which attempt to solve directly from a 
complex eigenvalue equation. The third includes methods which, either explic­
itly or implicitly, treat these states as more or less ordinary bound states. 

We construct in this paper a general functional from which several 
variational methods for thc problems mentioned above can be deduced. 

For the purposes of illustration we shall consider the one body, one­
dimensional symmetric problem, and seek the solution of the equation 

~P(r) = 0, (1) 
where 

(2) 
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We note in pissing that most of our considerations are true for general non­
singular operators of the type ~ = eft - I" eft being a linear but not necessarily 
selfadjoint operator defined on the Hilbert space L2 and I. E Cl. 

Consider the follovv-ing functional 

J[ . E· 611 6l'] /"'([? +M1\+ M1\ ([? >'( ) 1p, , ""I' W 2 = '\r~ W1, 'W2~1p I "P, '1p , (3) 

where the nominator in the r.h.s. of Eq. (3) is the usual scalar product in the 
space L2 w-ith the convention that the adjoint operators ~ + and ®1 + act to 
the left, ®1 and ®2 are arbitrary non-singular operators, and (1p, "P) means a 
formal norm for the expression (3). It is easy to see that, independently of the 
actual form of ®1' ®2 and (1p,1p), J = 0 if 1jJ is the exact solution of the Schrodin­
gel' equation (1) "\,,-ith encrgy-eigenvalue E (either from the point spectrum 
or from the continuous spectrum of the Hamiltonian :le) when solved subject 
to the same boundary conditions. The particular choices for ®1' ®2 and (1p, 
1p), in Eq. (3), result in the following functionals: 

AI. Bound states 

Choosing ("P, "P) = 1, "\",-ith boundary conditions* "P(O) = 0, "P(r) -->- 0 
as r -->- =, we get 

(4a) 

It is easy to show that the required stationary values (oJ = 0) of J are all 
zero and they exist only for a set of eigcnvalues of E identical with the eigen­
values of :If. One can prove that this variational procedure is equivalent to 
the well-known Rayleigh-Ritz method: 

(4b) 

A2. Scattering states 

With the boundary condition 1p ---+ a1 sin kr + a. cos kr for any r_co ... 

k > 0 one obtains the Hultcn functional 

(5) 

from which several variational methods of potential scattering for the phase 
shift T)( k) can be deduced [1]. 

* The boundary condition !p(0) = 0, for any trial function !p, is always required, so below 
the behaviour of If! at infinity will only be indicated. 



VARIATIONAL METHODS 

A3. Resonances 

a) Expanding the trial function as 

N 

1p = :E aif{!i , 
i=1 
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(6) 

where the cp;'s are elements of a complete set in the spaceL2, Eq. (4b) reduces 
to a real symmetrical matrix-eigenvalue problem, as in the case of bound states. 
The positive roots which are stable when varying the basis size N, approximate 
the resonance position Er [2]. 

h) Applying the co-ordinate rotation T -->- T exp riB] to the Hamiltonian 
"JC -+ "JC( 1J), the stable eigenvaJues E = Er - iFJ2 of the complex Hamiltonian 
matrix will correspond to complex resonance energies [3]. 

B. c§r\ = f( r) X, @2 = 1 

i.e. @l means multiplication by a suitably chosen posItIve definite weight­
function, and @2 is the unit operator in the HiJbert space £2. We then have 
the least-squares or variance functional 

(7) 

A more simplified version of (7) arises by approximating the integrals in (7) 
by summation 

(8) 

for any functions DJ and C, where the summation is taken over specific points Xi 

in the space of the system, andfhas been chosen to make the best approxima­
tion. 

Bl. Bound states [4] 

Adopting the expansion (6) for the trial function W, the most simple 
normalization for the expression (7) is 1 a1 12 = 1, where a1 is the leading linear 
parameter in the decomposition of1p. Of course, the requirement <5J[W, El = 0 
also includes variation with respect to E. 

B2. Scattering states [5] 

Taking 
N 

1p = :E ajcpj, 
i=-1 

(9) 

with rp-l= sin kr, rpo= g(r) cos kr, where g(O) = 0, g(r) ~ 1 and k = + VE r_oo 

is fixed, it can be normalized as (W, W) = 1 a_l \2 + \ ao \2. MteI' optimizing (7), 
the approximate s-wave phase shift '1]0 is given by tg '1]0 = aO/a_l' 

2* 
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B3. Resonances [6] 

Taking (!p,!p) = <"P,1jJ), the procedure Bl. can be applied to determine 
the real part of the complex resonance energy E. This method makes use of 
the fact that the wave function. at the positive energy Er is highly localized 
in the region of interaction, i.e. J[!p, E] has a well-defined minimum at Er 
with'square-integrable "p. Note·that'resonances are not bound states embedded 
in the continuum, thou'gh some c(mnection might he realized hetween them [7]. 

where'· 

(10) 

is a projection operator projecting onto a K-dimensional suhspace of the 
EHlbert space L2, spanned ~y the functions 'Xi' The operator 8J [( has heen used 
~' order not to calculatema:trix elements of (':Jt-E)2. 

Cl. Bound states 

The procedure El. cAn: ~ applied without modification \vith the require­
IIlent that K > N, N being the numher of hasis functions (h used in the expan­
sidn . ~f!p. We ohtain the ~etho'd cif'moments [8] hy choosing K = Nand 

Xj "( rp j' ., . ; 

C2. Scattering statelj. [9] 

Us~ng the same trial functioll1j) as in Eq. (8) with the normalization 
described in B2., the variational problem leads to an algehraic eigenvalue 
lprohlem for the coefficients ai• 

, C3;· Resonances ~ '.' 

'~la)A,.ppiying the co-o~~4i~ate rotation indicated in A3.b the procedure Cl. 
c~n be repc'ated to calc:W~te'the' ~o'~plex resonance eigenvalues E = Er - iTj2 
[10]. Here an additional optimization is needed with respect to Er and T, 
simultaneously. 

b) Let us define the resonance energy as complex eigenvalue of the 
Schrodinger equation (1) \dth purcly outgoing-wave houndary condition at 
inflinity, i.e.1jJ ----+ exp [i%r + yr 1".E' (% - iy)2, Y > O. Usually, variational r_oo 

methods cannot cope \dth this boundary condition hecause of the divergent 
i:irt~grals:appearingin the variation.al functional. This method, however, does 
n:o~ .~ailproYided all -of the: xts, de~rease faster than exp [-yr] for r -+ 00, 

ensuring fi:J;lite. matri~ eletrtents,[ll]. 
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Summary 

A formal variational functional is constructed for general operator-eigenvalue problems. 
Specific choices for the two non-singular operators, which are contained in the functional, lead 
to the well-kno\'ln variational methods applied to quantum mechanical bound state, scatter­
ing state and resonance problems. 

References 

1. RUDGE. M. R. H.: Variational Methods in Potential Scattering. J. Phys. B6 (1973) pp. 
1788-1796 

2. HAZI, A. U.-TAYLOR, H. S.: StabiIization Method of Calculating Resonance Energies: 
Model Problem. Phys. Rev. Al (1970) pp. 1l09-lJ 20 

3. DOOLEN, G. D.-NuTTAL, J.-STAGAT, R. W.: Electron-Hydrogen Resonance Calculation 
by the Coordinate-Rotation Method. Phys. Rev. AlO (1974) pp. 1612-1615 

4. LLOYD, M. H.-DELVES, L. ~f.: The Least-Squares Calculation of the Expectation Values 
of Arbitrary Operators. J. Phys. BI (1968) pp. 632-637 

5. READ, F. H.-SoTo-MONTIEL, J. R.: The Least-Squares ::Ylethod Applied to Scattering 
Problems. J. Phys. B6 (1973) pp. L15-L19 

6. FROELICH, P.-BRXNDAS. E.: Variational Principle for Qnasibound States. Phys. Rev. Al2 
(1975) pp. 1-5 

7. GAZDY, B.: On the Bound States in the Continuum. Phys. Lett. 6IA (1977) pp. 89-90 
8. KANTOROv-:ICH, L. V.-KRYLOV, V. I.: Approximation Methods of Higher Analysis. New 

York 1958, p. 150 
9. LADAl'<""YI, K.-SZONDY, T.: Least-Squares Technique for Scattering. Nuovo Cim. 5B 

(1971) pp. 70-78 
10. GAZDY, B.: Least-Squares Technique for Resonances. J. Phys. A9 (1976) pp. L39-L41 
11. GAZDY, B.: Bivariational Calculation of Complex Resonance Energies. Phys. Lett. 64A 

(1977) pp. 193-195 

Dr. Bela GAZDY H-1521 Budapest 


