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Introduction 

One of the most time consuming steps of quantum chemical calculations 
is the evaluation of molecular integrals. It strongly restricts the size of systems 
to be treated by ab initio methods. The various semi-empirical procedures 
neglect a considerable part of the integrals and handle others in an approxi­
mate way in order to decrease the computation time. The aim of present paper 
is to investigate the possibility of using the multipole expansion. The charge 
distributions of localized orbitals are expanded in terms of electTic moments 
up to second order and the sum of inteTaction energies of multipoles "Will be 
compared ,vith values of the corresponding exact Coulomb integrals. The idea 
of using the multi pole expansion for the calculation of intermolecular inter­
action energies is not new [1]. It was found that for the moments of the entire 
molecules the convergence is questionable espccially at smaller distances. 
The convergence seems to be improved, however, when the charge distribu­
tions of molecules are divided into smaller parts and the multipole expansion 
is based on the electric moments of these parts separately [2]. 

We decompose the charge distribution of the electrons into sum of contri­
butions from localized orbitals. If the localized orbitals are non-overlapping 
and their electric moments are transferable, then it is expected that the Cou­
lomb integrals can be substituted by the sum of interaction energies of the 
multi poles , to a fairly good approximation. In this case, for an extended 
molecule the effect of distant parts on a given part can be taken into account 
by multipole potentials. 

Multipole expansion of charge distributions 

InteTmolecular fOTces are usually divided into a short-range and a long­
range paTt. The latteT can be treated in a fairly rigorous way. The long-range 
interactions between molecules are classified as electrostatic, polarization 
and dispersion forces. The electrostatic contributions to the intermolecular 
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potential energy can be evaluated by using the multipole expansion of the 
charge distributions [3]. The electrostatic interaction energy between charge 
distributions is written in the form: 

(1) 

where ea and e~ denote the given charge distributions, r l and r 2 are usually 
taken from the center of gravity of ea and eb' respectively. The so-called bipolar 
expansion of Tl:/ makes it possible to introduce the multipole moments for cal­
culation of electrostatic interactions. If r al = r l - ra and r b2 = r 2 - rb are 
the relative co-ordinates, then r 12 = rab - ral + r b2• The bipolar (two-center) 
expansion of T;/ involves the radial functions Bi:::~, which have different for­
mulae in different regions of space. In the region where the charge distribu­
tions do not overlap, the coefficients have the follo,dng forms: 

( I )lb+m(l I l) I la h Blml( ) - aT b • Ta, Tb, (2) 
lalb Tal' Tb2' Tab = (l ...L I I) I (l I I I) I la-cib+l 

a I m I • b T m I • Tab 

When T12l is expanded in spherical harmonics, the multipole moments can be 
related to the bipolar expansion. The order of moments: zeroth order (mono­
pole), first order (dipole), second order (quadrupole), etc., is determined by 
the quantum number 1 of the charge distributions. In general, the multipole 
moments depend on the choice of origin. The first non-vanishing moment is 
always invariant under the translation of the co-ordinate system. The origin 
is usually chosen as the center of charge distribution. 

There are two crucial points as to the use of multipole expansion. First, 
there is the convergence of series lab' The spherical Bessel-functions have 
been proposed for evaluating the integrals, and so the space should not be 
divided into various regions. The four-center expansion has also been intro­
duced for calculations of molecular integrals. The convergence for Gaussian­
type orbitals was proved and compact expressions were obtained using spher­
ical harmonics. Second, the overlap of charge distributions causes certain 
difficulties in actual calculations. If ea and eb overlap, the regions (divided 
by complicated boundaries) give different contributions to the total electro­
static energy. 

For two cylindrically symmetric charge distributions the expression lab 

can be 'VTitten as: 

lab = _1_ + ~ {8 b(3 cos2 1Jb - 1) + 
Tab 4Tab 

+ 8 (3 cos2 1J - I)}...L 38a8 b {I - 5 cos2 1Ja - (3) 
a a I 16 5 

Tab 

-- 5 cos2 Db - IS cos2 1J a cos2 Db + 
+ 2 [sin 1Ja sin 1Jb cos (CPa - CPb) - 4 cos 1Ja cos 1Jb]2} 



ELECTROSTATIC IlVTERACTIONS IN MOLECTJLES 179 

using the moments up to quadrupole. As we intend to calculate the interaction 
of electrons, we expand only the electronic charge distribution. In this case 
the dipole moments vanish, so in expression (3) the first term is the monopolej 
monopole, the second the monopolejquadrupole and the third the quadru­
pole j quadrupole interaction. 

In actual calculations it is more convenient to take a co-ordinate system 
fixed with respect to the two charge distributions [1]. The z axis coincides 
"with vector rab,fJa and fJb are the angles betv,reen the common axis z and the 
mean axes of symmetric quadrupole tensors ea and eb• The scalar quantity 
(quadrupole moment) ea can be calculated by the eigenvalues of diagonalized 
symmetric tensor Qa: ea = 1/2 (2q~ - q~ - q~). eb is defined in a similar way. 
The angles CPa and CPb in (3) are the rotation angles around z ,dth respect to 
the axes Xa and X b• The Jab interactions between molecules are calculated 
in atomic units. 

In quantum chemical calculations the multipole expansion is extensively 
used ,dthin the point-charge model. No investigations have yet been made, 
however, whether localized orbitals can be represented by their multipole 
moments in evaluating the orbital interactions. 

Electric moments of localized orbitals 

The charge distribution of a localized orbital (Pi can be expanded in 
terms of its multipole electric moments. The centroid of charge vector ri 

is determined by the expectation value of one-electron operator r: 

(4) 

while the components are obtained by expressions 

(5) 

The origin of second moment tensor is shifted to the corresponding end point 
of the centroid vector. The second moment tensor has the components 

n, v = x,y, z (6) 

so they are "located" at the given localized orbital. 
In this paper we investigate, whether the Coulomb integrals in terms of 

localized orbitals can be substituted by bipolar multipole expansion of elec­
tric moments. This study is an essential part of our work carried out on the 
use of a moment model for characterizing localized orbital charge distribu­
tions [4-10]. 
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Results and discussion 

In the calculations basis sets of (13s7p/4s) Gaussians contracted to 
[4s2pj2s] have been used [4]. The bond length and angles were taken at the 
experimental values [11]. 

It has already been pointed out that the centroid vectors of bond pair 
orbitals do not coincide exactly ,vith the internuclear axes [4]. The deviations 
are, however, not too large. Similarly, the centroid vector of a given localized 
orbital is not parallel exactly to the main axis of diagonalized second moment 
tensor's ellipsoid. The deviation is larger for lone pair orbitals, but even for 
them less than 10°. The tensor is nearly degenerate in two directions: double 
degeneration has been found for the studied systems. The bond pair charge 
distributions are always nearer to the cylindrical symmetry than the lone pair 
orbitals. 

The diagonalization procedure for the second moment tensors of localized 
charge distributions has been carried out for each orbital. The values obtained 
for the molecule H 20 are given in Table I. The second moment components 
Quv of symmetric tensor Q of bond and lone pair orbitals are presented. The 
centroid vector components fu show that bond and lone pair orbitals' centroids 
of H 20 are situated in two perpendicular planes. The quantities cu,; are the 
eomponents of eigenvector C u of tensor Q. Only the components cxu are given, 
because one of the vectors cy or Cz is equal to the unit vector, while the other 
has the same components as cx ' The eigenvalues qx' qy and qz do show the cy­
lindrical symmetry: qx ~ qy ~ qz. In Table I Lla denotes the deviation of 
valence axis and the centroid vector for bond pair orbitals, Llp is the deviation 
angle between the latter and the ellipsoid's mean axis. 

The calculated Coulomb integrals for bond and lone pair orbital inter­
actions are given in Table H. The distance d between the center of charge 
density of bond pair orbitals is larger than between the lone ones. The angles 
fj and ffJ are as defined in §2. The calculated interactions Jab using the mono­
pole and quadrupole moments show that the electrostatic interaction between 
the monopole moments dominates expression (3), as expected. The Coulomb 
interactions between localized orbital densities are given in Table II as well. 
The electrostatic interactions lab (see as "Total lab" in the Table) are larger 
in all cases investigated than the calculated Coulomb ones. It should be empha­
sized, however, that the bond and lone pair orbitals do overlap at the same 
oxygen nucleus, so the expression (3) is not valid for these cases. In spite of 
this the agreement is quite reasonable: the bond/bond interactions differ the 
least from the exact Coulomb integrals «35%), the lone/lone ones' deviation 
is rather large (>60%). 

The Coulomb interactions between localized orbital densities for some 
eighteen-electron systems have also been studied. The bipolar multipole ex-
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Table I 

Diagonalization of second moment tensors 
for H 20 localized orbital densities 

Bond pair Lone pair 
orbital orbital 

Qx.x -1.348561 -0.458867 

Qxy 0.0 0.0 

Qxz 0.696272 0.0 

Qyy -0.444533 -0.870960 

Qyz 0.0 -0.284801 

Qzz -0.978506 -0.656709 

Tx 0.766942 0.0 

Ty 0.0 0.517431 

Tz -0.606797 0.313999 

Cxx 0.809025 0.0 

Cxy 0.0 0.639793 

exz -0.587774 0.768548 

qx 0.928110 0.705060 

qy 0.442554 0.456279 

qz 0.445332 0.458867 

Lla: -0.61° 

Llf3 +2.35° -8.53 0 

Table n 

Interactions for H 20 localized orbitals 

d 

1\ 
{}2 

rp 

Mono/Mono 

Mono/Quadrn 

Quadrn/Quadrn 

Total Jab 

Coulomb integral 

Deviation in % 

Bond/Bond 

1.533884 

35.999° 

144.001 ° 

0.0 

0.651940 

0.064689 

0.029006 

0.745635 

0.560641 

33.00 

Bond/Lone 

i 

i 1.305297 

I 27.129° 
I 

!139.112° 

1.606° 

0.766109 

0.094843 

0.031259 

0.892211 

0.614295 

45.24 

Lone/Lone 

1.034862 

39.776° 

140.224° 

0.0 

0.966312 

0.086199 

0.050586 

1.103097 

0.676683 

63.02 
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pansion was used for calculating of bond/bond, bond/lone and lone/lone inter­
actions. Now we present the results obtained for CH 30H, NH 20H and OHOH, 
as hydrides related to molecule H 20. This choice makes it possible to compare 
the interactions of the same type in different molecules. The calculated values 
are given in Table Ill. The study of bond/bond interactions especially in the 
case of OHOH is interesting. In contrast to the deviation obtained for H 20 
( ~ 33 %), in these systems for the localized orbitals connected to different 
centers (bond/bond in Table HI) the calculated multipole interactions agree 
well ("within 2%) 'with the corresponding Coulomb integrals. For the localized 
orbitals connected to the same central nucJeus (bond/lone and lone/lone in 
Table HI) the deviations are rather large, similar to those in H 20. 

It is apparent from the above results that the reliability of the multipole 
expansion depends strongly on the distance of the corresponding centroids. 
The closer they are the larger the overlap of their charge distributions, result­
ing in an increasing deviation of the values calculated by the two methods. 
The deviations for the lone pair orbitals are the largest, because theircentroids 
are the closest to each other and their charge distribution is rather diffuse. 

Table ill 

Interactions of localized orbitals for some eighteen-electron 
hydrides 

CH,OH :NH,OH OROR 

BondJBond* 

d 3.540380 3.739449 3.512163 

Total Jab 0.263291 0.268557 0.284947 

Coulomb integral 0.258849 0.264670 0.279557 

Deviation in % 1.72 1.47 1.93 

BondiLone 

d 1.311290 1.325672 1.334075 

Total Jab 0.859162 0.850937 0.846340 

Coulomb integral 0.615033 0.620051 0.622799 

Deviation in % 39.67 37.24 35.89 

Lone/Lone 

d 1.034·212 1.079140 1.103567 

Total Jab 1.065176 1.001813 0.965967 

Coulomb integral 0.678260 0.678197 0.678194 

Deviation in % 57.05 47.72 42.43 

* CH/OH, NH/OH and OH/OH interactions, respectively 
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For the calculation of the interaction energies of two localized orbital 
charge distributions connected to the same center the multipole expansion 
is inapplicable. For disconnected charge distributions the method seems to 
be promising at least for obtaining a rough estimate of the corresponding 
Coulomb integrals. 

Summary 

The charge distribution of localized molecular orbitals in terms of multi­
poles up to seco;d order and the sum of interaction energies of the multipoles is compared 
with the values of the exact Coulomb integrals. Satisfactory agreement was found for larger 
distances. 
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