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Introduction 

In the free molecule region the molecules move independently of each 
other. In the near-free molecule region the number of collisions between mole­
cules is commensurable to the number of collisions "with the wall but the con­
ditions of the continuum approximation fail. The regions are marked out by 
the Knudsen number Kn, the ratio of mean free path A to the characteristic 
geometrical dimension D. (In the ease of a cylindrical tube of radius Ro Kn 
equals ).f2Ro}. The flow is free molecular for Kn > 10 and near-free molecular 
for 0.1 < Kn < 10. 

The geometrical conditions and the gas-surface interaction determine 
the free molecule flow. The independence of molecule paths facilitates the 
theoretical considerations when Kn > 10. Taking the binary collisions be­
tween the molecules into account difficulties arise: one has to deal 'With the 
collision dynamics and to solve the problem of the initial distribution with 
respect to the iteration procedures. . 

The subsequent problems of the axial symmetrical near-free molecule 
flow "lvill be discussed from the aspect of test particle method of Monte Carlo 
calculations. Treatment of collision dynamics problems and some results of 
calculations have been published elsewhere [1]. Here only the problem of 
the initial distribution of near-free molecule flow around circular orifices· as 
wen as in and around cylindrical tubes is investigated. From the aspcct of 
collisions the initial distribution is free molecular in the tube and near the 
tube exit in the vacuum side. The real difficulties appear at the start of the 
test particles. 

Different approximations 

In the case of free molecule flow from the vessel contammg a gas of 
number density no, the flow is steady and the rate of emission through the 
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orifice " .. -ithin the solid angle dQ which makes an anglef) ,,,-ith the normal to 
th~ plan:e of the orifice and within the velocity interval v and v + dv is 

<P",I) dQdv = v cos {) io(v)v2 dQdv (1) 

where io is the distribution function of the uniform gas in the vessel far from 
the orifice : 

(2) 

where Vo is the most probable velocity. Normalizing Eq. (1) by the total flux 

<Po; 

m 1 " 
'Po = -no(v) 

4 
(3) 

where (v) is the mean velocity, we get the dimensionless relative flux in the 
form 

1 
q;-<P",lJ dQdv = F(iJ) y(v) dQdv 

o 
(4) 

where the angular distribution is 

1 F( iJ)dQ = - cos {) dQ (5) 
JC 

and the probability density function for the velocity magnitudes is 

(6) 

By means of Eqs (5) and (6) the direction and magnitude of the velocity of 
molecules emerging uniformly distributed from the orifice cross section can 
be selected. 

Let us investigate a circular aperture of negligible lip thickness. Colli­
sions between the molecules impair the isotropy in the vessel: in the direction 
of the orifice the mean free path elongates and an inward flow appears toward 
the vessel from the vacuum side because of the collisions near the orifice. The 
flux "\\--ill be greater than <Po in Eq. (3). Since the change of the mean free path 
depends on the direction of the velocity of molecule to the orifice, Eqs (5) 
and (6) give distributions wrong. The local flux "ill change as a function of 
the distance R from the centre of the orifice in the aperture plane. For deter-
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mining the flux it is necessary to know the distribution function f(r = 0, v) 
across the orifice: 

<p{),V dQ dv = f(r = 0, v)v cos 1lv2 dQdv (7) 

where the condition r = 0 refers to the flux in the aperture plane. At different 
distances R from the centre of the orifice the distribution function assumes 
different values, and the distances r are measured in direction v from the plane 
of the aperture. 

The iteration procedure by NAIlASIMHA [2] and WILLIS [3] enables f(r = 0, 
v) to be determined. Their iteration procedure is based on the integral form of 
the Boltzmann equation. In+1) (r, v) at r results from the n-th step of the itera­
tion if the distribution function In) (ro, v) is known at r 0: 

;: -

f (n +1)(- -) - f(- -) {-J J~n)(z', v) dZ"'} I r, v - r 0' v exp ., 
V 

ro 

(8) 

The collision integrals J 1 and J 2 can be calculated by using the simplifying 
suppositions of the BGK model equation. The known distribution function 
at r 0 is the function fo of Maxwell distribution in form of Eq. (2) for the uni­
form gas in the vessel far away from the orifice. Near to the orifice the known 
number density n(r) and the mean molecular velocity 

u(r) = : J vf(r, v) dv (9) 

are the free molecular values in the zeroth approximation. Using dimensionless 
form by units v o' Ro and no, and introducing the quantity fJ = 1/(1 - 2u2/3), 
the first approximation for f(r = 0, v) is 

r 

f(r = 0, v) = fo 1 J2.. n2fJ3/2 exp {v2 - fJ(v - ur~} exp{- 1 Sndr'} dr 
V; Kn v 1fn Kn 

o 0 
(10 ) 

Knowing the free molecular distributions n(r) and u(r), Eq. (10) fairlyapproxi­
mates the distribution function for Kn > 1 [4]. 

In Eq. (10) the coefficient of fo is a statistical weight, which gives the 
intensity of the particle flux emerging from the orifice, unit flux of particles 
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of velocity v being determined by Eqs (5) and (6). To apply Eq. (10) for Kn < 1 
it is necessary to determine distributions n(T) and u(T) of the gas at Kn = 1 
in the vessel near the orifice by the procedure described above, taking into 
account the molecules travelling backward because of the collisions. This 
procedure requires a lot of computer time, so it is worth to deal with simplifica­
tion possibilities. 

In a uniform gas the probability that a molecule reaches a distance 
greater than x is exp (-x/l.). In the presence of the orifice, less of molecules 
will travel in the opposite direction, so the probability mentioned above , .. ill 
be greater, and it is proportional to the solid angle ow( 1), representing the orifice 
from the given point. The probability may be calculated for 1) = 0 and as 
the relation c'iw( 1) = cos 1)c'iw( 0) is right far away from the orifice, Wahlbeck [5] 
has got for the molecule flux: 

n (v) 
([Jp = _0 -' - cos 1) {I + cosfJ [c'iw(0)/2n]} 

4n 
(11) 

where 

c'iw(O) _ 1 _ ~ [H (_1_)' _ Y (_1_)'] -L _1_ (12) 
2n - 4Kn 1 2Kn 1 2Kn I 2Kn' 

In Eq. (12) H1(x) is the Struve function and Y1(x) is the Bessel function of 
second kind. 

In Wahlbeck's approximation the flux is uniform across the orifice 
and the velocity distribution is lVIaxwellian. This approximation gives correct 
results for Kn > 1 and the total flux ([Jo is accurate enough, again provided 
Kn < 1 because the formula of ([Jo is fitted to the continuum region: 

(13) 

It is easy to simplify Eq. (10) by neglecting the change of the velocity distribu­
tion; taking simply v = <v) and u = O. The result is: 

r 

l' [ 1 . 
f(r = 0, v) = fo --J n2 exp - --J n(r')dr']dr. 

2Kn 2Kn 
(14) 

o 0 

Eq. (14) gives different ,,,-eighting factors at different distances from the centre 
of the orifice. Eq. (14) is handled in the computations similarly to Eq. (10), 
but the needed computational work is far less. 

The comparison '"ith the experimental data shows Eq. (11) to give 
accurate results for Kn > 1, but to correct the deviations for high and low 
values of anglefi for Kn < 1 Eq. (14) has to be used. This fact is illustrated 
in Fig. 1, demonstrating the necessity and sufficiency of Eq. (14). 
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Fig. 1. Relative flux vs. the Knudsen number at different angles {} 
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In the case of cylindrical tubes the simplest procedure is to use Eq. (11) 
to calculate the near-free molecule flow. In this procedure the change of the 
yeloCity distribution may be neglected and the anisotropy is determined from 
the density ratios. Numerical values of three numher densities belonging to the 
given Kn haye to be know-n: the density no in the yessel far away from the 
entrance plane of the tube; the ayerage density n~ near the aperture of negli­
gible lip thickness; and the average density nt near the entrance of the tube. 
These number density values yield the factor j: 

. no - nt 
J= 

no - n~ 

where nt = ni/no and na = n~!no' In Eq. (11) ow(0)j2-:r must be multiplied 
with this factor j. 

Accuracy of calculations is improved by determining the distribution 
of molecules travelling backward by one or more iteration cycles using Eqs 
(11) or (10). 

Conclusions 

The calculation of the initial distribution of test particles in long tubes 
considerably increases the computer time, but the Monte Carlo method is 
generally inefficient for long tubes. Table I sho·ws the comparison of the three 
approaches of different accuracies. The density ratios at characteristic points 
of the tube are compared; in n(R, z) Rand z are measured from the centre of 
the orifice, R along the radius in Ro units and z along the axis of the tuhe of 
length L. In the same way are presented the ratios of the axial components 
of mass velocity defined by Eq. (9). Since Eq. (10) gives reliahle results on the 
level of the BGK model equation, Table I 8ho·ws the percentile deviations of 
the values calculated by Eqs (11) and (14) from results hy Eq. (10). 
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Table I 

LJR, = 2 Kn= 2 LJR. = 0.5 Kn = 0.28 

Percentile deviations from Eq. (10) 

(14) (11) (14) (11) 

n (0.52, 0.9L)/n (0.52, O.IL) 2.81 2.17 4.81 13.02 

n (0.17, 0.9L)/n (0.17, O.IL) 3.05 3.27 7.71 15.25 

n (0.97, 0.5L)/n (0.17, 0.5L) 2.11 4.83 5.14 8.61 

U z (0.52, 0.9L)/uz (0.52, O.IL) 1.67 3.17 6.26 7.75 

uz (0.17, 0.9L)/uz (0.17, O.IL) 2.24 2.91 4.75 10.62 

u z (0.97, 0.5L)/uz \0.17, 0.5L) 2.02 3.71 5.17 12.10 

et: 2.21 1.98 2.75 33.81 

It is understandable that the method taking only the dependence on 
angle -&. into account gives considerable deviation for Kn < 1. It is noteworthy, 
however, that the transmission probability IX characterizing the mass transfer 
along the tubes, may be calculated 'ivith a minimum error even by Eq. (ll). 
This peculiarity may be attributed to the fitting of the total flux in Eq. (13) 
to the continuum region. 

Taken all in all the expected closeness of every approximation is propor­
tional to the required computer time. When a detailed determination of the 
flow or Kn < 1 is needed - involving density distribution, mass velocity, 
angular distribution of the emerging particles - Eq. (10) is imposed for maxi­
mum accuracy [6]. In other cases even approximations using Eq. (ll) or Eq. 
(14) are satisfactory. 

Summary 

In the near-free molecule region the collisions between the molecules impair the isotropy 
near the orifice. The test particle method of the Monte Carlo calculations requires the knowl­
edge of the distribution function in the orifice plane. Various iteration procedures approach 
the distribution function in the interval of the Knudsen number 0.1 < Kn < 10. The approxi­
mations are compared by way of the characteristic distributions of the axial symmetrical 
flows. 
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