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Introduction 

The main concept of the thermodynamic theory of relaxations is to 
introduce-besides the well-known external variables of state-the existenC£! 
of so-called internal variables of state [I, 2, 3, 6]. The internal state va,riablt<s 
are to give an over-all description of microscopic processes having influence 
on the macroscopic properties of the system investigated. The theory does not 
require an exact knowledge of the mechanisms of the molecular processes, 
a fe"w main features of them are enough to apply the formalism of nOJl-equi­
librium thermodynamics as far as it is needed for getting an exact pict~re of 
the macroscopic processes influenced by relaxations. So this theory 'has a 
'\"ider range of validity than the statistical mechanical theories. ' 

In this paper the heat conduction influenced by relaxation phenomena 
is investigated. The principle of local states is supposed and so the fields of 
local state variables are used. Moreover the existence of local specific entropy, 
which is a unique function of local state variables, is presumed [1,2, 3; 5, 17]~ 

1. Relaxations in closed systems 

Let us consider a body, the equilibrium states of which are described 
by the internal energy, but out of equilibrium more variables are needed. 
The specific entropy s is given as a function of the specific internal energy u 
and a number of the internal variables: 

(1) 

During processes in a homogeneous closed system the internal energy does not 
change, only the internal co-ordinates vary. When the system has reached the 
equilibrium its entropy is a maximum and the internal variables take their 
equilibrium values. A suitable choice of the internal parameters yields a simple 
form for (I) [6, 8]: 

(2) 
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From (2) tlie actual form of the entropy production is 

K . 
(]8 = Cis = - Q ~ ~j~J' 

j=! 
(3) 

The linear Onsager laws are the differential equations describing the relaxa­
tion phenomena. Since no effect of inertia is intended to be considered, the 
Onsager reciprocal relations hold [2, 6, 7], and no Casimir's relations occur. 
For this reason, the differential equations mentioned can be given in a diagonal­
i7.,:,d form (see e.g. in [8]): 

(4) 

The processes can only be considered as simultaneous relaxations if inertiae 
are omitted. 

2. The homothermic relaxations 

a) The first type of homothermic relaxations 

The processes during which a unique thermodynamic temperature exists 
and ·the relations 

~=iJ=~ 
8u T 

and (5) 

hold belong the first type of homothermic relaxations. The balance equations 
for the internal ell!'rgy and for the entropy have the customary forms: 

eu + div ~ = 0 (6) 
and 

(7) 

Combining (5), (6). (7) and (2) we get the actual form of the entropy produc­
tion: 

(8) 

The line'ar laws, which have to lead to (4) when heat conduction is absent, are 

_ K 

Jq = Lqq grad iJ - ~ Lqj;j 
j=1 

rAJ = L qj grad iJ - Lj;j. 

(9) 

(10) 
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In the case of an isotropic body the coefficients L qj are non-zero if and only if 
the internal variables ~j are vectors [6, 7]. For this reason, in the case of the 
first type of homothermic relaxations, only the vectorial internal variables 
are important, the equations for all the others are homogeneous, their solutions 
do not depend on any boundary condition. The internal co-ordinates 'iv-ith 
no vector character tend to zero during the processes, and they will not be 
generated any more. 

In the simplest case, the body needs a single internal variable, K = l. 
The constitutive equation for the heat current density arises by eliminating 
~l from (9) and (10): 

Introducing (11) into (6) we get the equation of heat conduction: 

(12) 

b) The second type of homothermic relaxations 

The processes during which the entropy current is proportional to the 
heat current, but the factor of proportion differs from the derivative of the 
entropy v,ith respect to the internal energy belong to the second type of homo­
thermic relaxations. Instead of (5) we have 

and (13) 

where T e is the thermodynamic temperature of the body in an cquilibrium 
state 'iv-ith the same internal energy and f} is the reciprocal value of the so­
called Meixner temperature [5, 11, 4]. The balance equations for the internal 
energy and the entropy - (6) and (7) respectively - do not change. Combin­
ing (2), (6), (7) and (13) we get the actual form of entropy production: 

(14) 

Since the factor (f) - f}e) occurring here must equal zero in the state of local 
equilibrium, it is well approximated by 

(15) 

not too far from a local equilibrium state. For an isotropic body, only the scalar 
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internal parameters appear in (15), so scalars are taken care of alone. The 
equation (15) permits to simplify (14) to 

The Onsager laws are given in the forms of 

and 

~ = Lqq grad {} = Lqq grad ({}e - ~ Yij) 
)=1 

(16) 

(17) 

(18) 

These equations are analogous to those of heat conduction in a chemically 
reacting body, moreover give a good description of heat conduction in colloidal 
systems. 

3. Heterothermic relaxations 

There is a close connection between the heat current and the entropy 
current in the case of the heterothermic relaxations too, but it is more involved 
than in (13). The heat conduction is supposed to be a result of a number of 
different processes, 

(19) 

and each part of the heat flux joins an entropy flux in the usual way. This 
is the situation in plasmas where electrons as well as ions take part in the heat 
conduction at different temperatures, moreover in difform systems and in some 
kind of mixtures [15, 16]. The balance equation of the entropy turns into 

es + div (ienJ,,) = (fs > O. 
,n=1 

(20) 

Substituting (2) and (6) into (20) yields (fs' 

N_ N _ K. 

(fs = ~ I n grad {}n + ~ ({}n - ee) div I n - Q ~ ~lj' (21) 
n=1 n=1 j=1 

The factors ( en - ee) occurring here can be given in forms similar to (15): 

(22) 
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These relations simplify (21) to 

N _ K (. N _) 
Cfs = ~Jngrad1tn-~;j Q;j+ ~YnjdivJn . (23) 

The Onsager-Iaws have the forms of 

(24) 

and 
. N _ 

e;j + ~ Ynj div I n = - Lj;j. (25) 
n=l 

Eq. (25) are similar to the balance equations, they describe the transports of 
internal degrees of freedom. Eqs (24) and (25), together ,,,ith (6) and (22), 
form a system of partial differential equations that can be solved when the 
proper initial and boundary conditions are known. 

4. Remarks on the effects of inertia 

Till now no effects of inertia have been considered, so all the internal 
variables were even "ith respect to time reversal. From a theoretical point 
of view, no circumstance prevents the occurrence of odd internal parameters. 
An analysis of (15) and (22) shows that no odd internal parameter can occur 
in them, and so the inertia of processes can play no central role either in the 
heterothermic relaxations or in the second type of homothermic relaxations. 
Hence the first type of homothermic relaxations ,,,ith vectorial internal vari­
ables has been left to investigate. For the sake of simplicity the case of an only 
internal parameter ,,,ill be restricted to which is odd , .. ith respect to time 
reversal. The argumentation in item 2a is still valid but the Onsager reciprocal 
relation turns to Casimir's one. Eqs (5), (6), (7) and (8) ,,,ith K = 1 hold and 
the linear laws become 

~ = Lqq grad {j (26) 

(27) 

if the body is isotropic. Eliminating ~1 we get the constitutive equation for the 
heat current density: 

(28) 

This equation is very like (ll), but the sign of L~l in the last term is differ­
ent, still this difference is significant enough. Namely, as a consequence of 
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entropy production being positive definite, the coefficients both in (11) and 
in (28) are positive. Hence Lqq in (11) can only be zero if the body is unable 
to conduct heat because the disappearance of Lqq involves the disappearance 
of the coefficient of grad f} as well. The case in (28) is quite different. Here Lqq 

may equal zero, ·whilc Lql has a finite value. In this way (28) reduces to 

e~ + Ll~ = L~l grad f} (29) 

which leads to an equation of heat conduction of the form 

(30) 

This equation is analogous to that proposed by CATTANEO [18] and VERNOTTE 

[19], and does not lead to an infinite velocity of temperature propagation. An 
analysis of the equations of heat conduction obtained shows that odd internal 
parameters are needed for avoiding the infinite velocity of temperature pro­
pagation. 

Summary 

This paper is concerned with the phenomenon of heat conduction influenced by relaxa­
tion. The processes are classified within the framework of Onsagerian thermodynamics. The 
argumentation includes a generalization with respect to temperature and bodies with several 
temperatures are dealt with. Finally, some effects of inertia are discussed. 
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