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Our previous paper [1] dealt with heat losses in pipelines during hours of
peak operation. The developed computation method to determine temperature
drop and heat losses in hot water networks during eyelic temperature variation
was checked by measurements. The computation method involved some
approximations, neglects those justified empirically and by measurements. In
this paper, the admissibility of the neglect will be theoretically analysed
and justified.

1. Differential equation of the phenomenon

This phenomenon is expressed as:

ou . 9%y du P
c-p » =4 " c-0-w » k (w— uyp) §))]
where

u [°C] water temperature
u;, [°C] ambient temperature
t [h] time
x [m] longitudinal coordinate of the pipeline
¢ [kealkg, °C] specific heat
o [kg/m?] density of water
4 [keal/m. b, °C] heat-conductivity coefficient of water
w [m/h] flow rate
E [kealjm? h, °C] heat-transfer rate referred to the pipe outer surface
p [m] outer circumference of the pipe

q [m?] inner cross-section area of the pipe
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The first term on the right side of the differential equation (1) is the heat
conduction in the fluid, the second one the temperature variation upon flow,
and the third one the temperature drop due to heat transfer to the surroundings.

The water is fed into the pipeline at a predetermined time-dependent
temperature (Fig. 1) with the boundary condition:

u(0, 1) = g(t) (2)
the function g(t) being known.

From the comparison of the orders of magnitude of numerical coeffi-
cients in (1)

¢+ p=10° keal/kg, m?
A==5+10"1 keal/m? h, °C
¢ o w=3"-10° keal/m? h, °C
k== 2 - 10% keal/m? h, °C
q

The term for heat conductivity is seen to be small by at least 103 order
compared with other terms, hence in our previous paper it was neglected as
a first approximation. ’

Q. — -
lhecifp] daily average
L8 72 6 20 26 28 fime
Ue[OC]
T8 72 76 20 26 28 time
Ik
calfl '_______L dai/;J average
Y8 12 16 20 24 28 time
[27) [ OC] W

Y 8 12 16 20 24 28 rlime

Fig. 1. The periodic temperature function as initial condition
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In this paper a new solution will be described for the differential equation,
taking the 2nd-order term into comsideration.

In turn, the following minor simplifications supported by tests will be
introduced.

a) In any given cross-section, the temperature distribution is a function
of time alone; hence, seen in the space, this problem is reduced to a linear one.

b) Because of the process features, the initial distribution of temperature
in the pipe will be omitted.

¢) The ambient temperature is considered as constant.

2. Solution of the differential equation (1)

Introducing the transformation

u—uk—_—z‘}

and arranging vields for the overtemperature ¢ = ¥(x,t) the differential

equation:

31 Ry o9 e

8 b w2 P g (3)
BL o-¢ Bx? Bx p-C-q

N

With a view to the periodicity of function g(t), the boundary condition (2)
becomes:

(0,1) = g(t) = 3 A, cosn — ¢ + Bsinn (4
u(0,¢) =g(t) = A, cosn — 1t Bysinn —t 4
T & T T )

=0
where, with the length of period T, we have:

5

T
27
A, = Jg(t)cos n Tt-dt

0

lﬂ]l\)

2 27
B, = -— t)sinn—¢-dt
n ng() inn—

n=12,...
and

=—1—J (2) - dt
T
1]

according to the sense.
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The complex form of the Fourier’s series (4):

27

o in—,lirt
gt) = 3 cnve (5)
N=— eo
where

Co = 4,

¢, = A, — iB,

2
C_. — An —’: iB,

according to the sense.

Writing boundary condition (5) for the transformed differential euqa-
tion (3):

2

90,0 =u(0,) —w= g) —w=f)= 3 Ci-e (6)

N —ea
where

C¢=Cy—u, Ci=C,.
Let us introduce for Eq. (3) the transformation:
P = erxolp(x, 1)

v
where constants y and ¢ are defined so as to zero the coefficients of — and
x
of function v(x,t) in the transformed differential equation, resulting for
and ¢ in:

The differential equation (3) with function v(x, t) becomes:

i 9
dv Y 1j_ —0 (7)

ot p-c Ox
Thus, the solution #(x, ¥) can be written as:

Weoe k. L whpee
) x—( L
#=e

\ocog T 44

o(x, 1 ()



COOLING OF HOT WATER IN LONG PIPELINES 47

hence:
_ Q ( n w. g ¢ )l
v(x,t) = o et T, 1) 9
and the boundary ceondition:
fp wee) L
v(0,1) = Leeq T ) S Cte T (10)
FEE
Let us write the solution v(x, t) as:
D o= 2 v, (x, t) (11)

N=—co

Now, individual terms at the boundary become, according to Eq. (9):

(fp -+ — ,m——-)t
v, (0,t) = Ck.e "7 (12)
Now, terms in function series (10) are sought for in the form:
v (%, £) = C e9nx+bat (13)

where constants ¢, and b, are determined from differential equation (7) and
boundary conditien (10):

k- w cl\? . 2m p-c
a, = —- P -+ e -+ in =
A-q 22 T A
k. wrep-c . 2z
bn = P -+ = “!— n
p-c-q 42 T
to
[B_C_ — 1/L ;(W'Q'C )2 ¢inEr_ Q'c] V.‘.ini'r. t
9, (x,8) =Cx-el ' 7g 3 T % T
Solution u(x, t):
o (r—Vs-+ri+id,) x-in —2;4
u=u,+ X Cf-e (14)
M= — oo
where
w-0-¢ k- 27 o-c
r= §= p d,=n
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After extracting roots in the exponents of (14) we obtain
u?(x, t) — u‘h 5‘ C —E,‘\ it — Fyx) i (15)
n_.._ oo
where
27
W, =1 ‘—YT
3 ‘ d
— E, =71 —|(s+ r?)? 4+ d2-cos|— Arctg -
2 s r?
s (1 d
— F, = —(s + 1?2+ d2-sin {—— Arctg n
L2 s+

Obviously
LimE, =0

since, for n — co
(1
~—Arctg od, | =
2

4

V(s 2 +d2 - cos (—i— Arctg d } > 1d, cos

str
J— e a0 5 J— B E y
1;,dnl/l - cos(Arctgod,) - _1:_ Vd, - Vl - _,,T_hlﬁ L \d
2 2 P14 (0-dy)? 2
Writing function (15) in real form for ease of calculation
u(x, 1) = wy -+ (A —ug) =B+ 34, cos o, t— Fyx) +
n=1
(16)

e~ Enx

+ B, -sin(0,t—F, x)]-
As an example, consider differential equatlon (1) with the initial con-

dition:
2z
u(0,8) = g(t) = 4y + A, cos [

solved according to Eq. (16) as:
(17)

2z
D= (AO — u,“) ce—Egx + Al-e‘El"'-cos ( T o le
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3. Numerical results

Let us take the data encountered in our previous paper:

W = 3.0 - 10° [m/h]
¢+ o= 10° [keal/m?, °C]
A= 0.5 [keal/m, h, °C]
¢ p*w= 3.0 — 10% [keal/m? h, °C]
L.
2P 9. 10° [kealjm?, b, °C]
q
o = 0.2616 [1/h]
t=10 24 [h]
x=10 5000 [m]

Calculating exponents:

—E,=r—)r*+s

C0 - .106
e cew 3.-10 —3.106

22 2:0.5

- . 2.102
L) L T

A-q 0.5

— E,=3-108—|(3-10°2 + (2 -10) = 3-10¢

ol
3108
4
=3.106 1-1/1 4+
[ 9-1010}

Expanding the radical into series:

2
—Ey = —-— .10
3
4—-——_._————_’ 7 1 dl N
— E, =r—)/(r? + 5)? 4+ dicos |— Arctg
2 r’-4s |
since
- . 3 -
g =20 100, 45,
Y 0.5
thus

4 —
— E; = 3.105—1/(32- 10214 . 102)2 + 22. 108 * -

1 2.103.w ‘
cos |— Arctg '
2 (3-108)? -+ (2-10)*

4 Periodica Polytechnica 3L 19/1.
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In the same way we have:

R T
3

4/'—3__—;—‘_—‘) : 1 dl
— F; = — J(r? + s)> + d2sin —;)—-Arctg ]

ts )
) . 103
sin —l—Arc tg 4 = sin [—}— Aretg _ 210w Ao
2 r2-ts L2 32.1012 - 4.102)

.1 2.10%w 103w w
~2 81N e

2 9.102  9.102  9.10°

5 ‘
~—F1=~—(3-106+-‘— 511 e P B
| 3 9.10° 3.10%
2o | w
_ A —— . 1078
+ 3.9.101 | 3
Ax[m]
5000
]
u ]
1507 1
710
701
3 6 1215 1820 %,
071234356 t A

Fig, 2. The distribution of temperature as a function of pipeline length and time
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TFhus:
2 —1
— E, = = .10
2
—E =—— .10
3
— F,=—2 1073
3
and the initial parameters:
uk = 0
Ay ==110°C
A, = 40°C
to yield:
-2 jo-ax - % 20—6x - »
Hx,t) = 110-¢ ° —+ 40e - cos [t — ry <1073 . x| (17a)

4. Caleulation of the temperature distribution
omitting the second-order term [1]

3 ;.
C.Q_a_’.‘. ——cpow- k-p (1w — )
ot ox q
With x = 0, the initial condition is:
HO,t) = 4y + A; coswi
= 27 ;3 T=24[h]
T
Again, the general solution:
~ Ly - , x
Hax,t) == Age + A e cos |wi— o ——}
w

where 4, and A4, are constants of the initial condition, and

b= LtP

coq

w=3-10° m;’h = flow rate
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Calculation of constants

Initial conditions being identical, material constants are also the same:

- 2.102 9
_iz_ﬂ_:__‘_“_)ﬁz_:_.mﬂ
w c 0 qw 103.3.10°
e __ % 2 40

w 3.108 3

Ay =110C°

A, = 40°C

The equation being in final form:

[43]

Iz f) = 110e ° 440 ° cos ot— 21095 (17h)

The two alternatives (17a involving the second-order term) and (17b)
show complete identity.

In spite of different initial conditions, identity of the final form is due
to neglects permissible in engineering practice:

a} neglect of terms of higher than second order in expanding the radicals
into series;

b) application of the principle of sine value of a small angle equals the
angle itself known for trigonometric functions.
92¢ "

2

4ot

Thus, negligibility of the heat conduction term

is proven.

Similarly, our former assumption on the temperature of the absorbent
(the heated building) at the pipeline end not to react on the temperature
distribution of the water, seems to be justified.

Water-temperature distribution behaves as if in a semi-infinite pipeline.
The mains and the return pipes are dealt with separately, taking the “heated
building” or other heat-consumer appliance as “heat source” for the return pipe.

5. Numerical example

Calculation of temperature along an x = 5000 m pipeline. The equation
of temperature variation derived above is

2 2
— 10 — 10t

3 ; 3 cos (ot — 2. 10-%%| 4-
PHax,t) =110 ¢ -+ 40 3 (17 a,b)



For a better understanding, the detailed calculation vesults have been compiled in the following 7 tables:

Table 1

x [m) o | 50 100 200 ‘ 500 1000 2000 5000
2 L 2 4 1 2 4 1
e 10T = C D (T IR [ R e 1O L 10 e 100 P (e
3 1 X Y] 3 10 3 10 3 Lo } 3 ) 3 3 3
L 0.994 0.9806 0.967 0.936 0.875 0.716
!
110 109.56 109.34 108.40 106.37 102.96 90.25 78.76
40 & 40 39.84 39.70 39.44 38.68 37.44 35.00 28.64
10-3 x 0 0.05 0.1 0.2 0.5 1 2 5
i
Table 2
t i 3¢ ER 0 l 50 100 200 500 1000 2000 5000
! i
0 0 1 ~0.05 —0.1 --0.2 - 0.5 —1 —2 5
9 9 8.95 8.9 8.8 8.5 8 7 4
6 18 18 17.95 17.9 17.8 17.5 17 16 13
12 30 30 36.95 35.9 35.8 35.5 35 34 31
15 45 45 ' 44.95 44.9 44.8 44.5 44 43 10
18 54 54 ; 53.95 43.9 53.8 53.5 53 52 49
20 60 ST 59.95 59.9 58.8 50.5 59 58 55
24 72 | 72 , 71.95 719 718 11.5 71 70 67
i i

SANITTAdId INOT NI YTIVAH LOH J0 INIT00D
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Table 3
i;—(s: —107%x) [rad]

i
0 50 100 200 1 500 1000 2000 5000
0 0.004 —0.08 —0.017 —0.043 —0.087 —0.17 —0.43
0.786 0.771 0.777 0.769 0.742 0.699 0.611 0.349
1,571 1.568 1.562 1.552 1.528 1.484 1.398 1.135
3.14 2.14 3.135 3.126 3.1 3.056 2,97 2.71
3.93 3.928 3.92 3.917 3.886 3.84 3.76 3.49
4.71 4.71 4.706 4.9 4.67 4.63 4.54 4.28
5.24 5.24 5.23 5.2 5.195 5.15 5.07 4.8
6.28 6.28 6.278 6.24 6.24 6.2 6.11 5.85
i
Table 4
5 (3t — 107 []
0 50 100 200 500 1000 2000 5000
0 —0.23 —0.46 —0.97 —2.46 —4.98 —9.74 —24.6
45 44.7 44.5 44 42,5 41.2 35 20
90 89.8 89.6 89 87.6 85.1 80.1 65
180 180 179.5 179 177.5 175 170 155
225 224 2241 224 2228 220 2156 200
270 270 269.6 269 267.5 265,2 206 245
300 300 299.7 298 297.5 295 200.5 275
360 360 359.5 } 358.5 | 358 355.5 350 3335
! i |
Table 5
cos %— (3t — 10% x)
: g w- 0 50 100 200 500 1000 2000 5000
0 -+ 1 1 1 0.9998 | 0.999 0.996 0.9858 | 0.91
3 = 0.7071 | 0.71 0.7133 | 0.7193 | 0.7373 | 0.751 0.8192 | 0.9397
6 -+ 0 0.005 0.006 0.0175] 0.042 0.085 0.171 | 0.4226
12 — 1 H 1 0.9998 | 0.999 0.9962 | 0.9848 | 0.9063
15 — 0.7071 | 0.7150 | 0.7152 | 0.719 0.734 0.7660 | 0.813 0.9397
18 — 0 0 0.005 0.0175 0.0436 | 0.082 0.1736 | 0.4226
20 -+ 0.5 0.5 0.495 0.4695  0.4617 | 0.4426 | 0.3502 0.0872
24 -+ 1 1 1 0.9997 0.9994 | 0.9969 | 0.9448 | 0.9063
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Table &
— e X . )
40.0 ° [cos —;i (3t — 10~3 x)J
x== ; 0 | 50 100 ] 200 E 500 ‘ 1000 2000 5000
i i ! ]
t = 0[h] 40 | 39.8 ! 39.8 39.4 ‘ 39.6 37.4 34.5 26.1
3 28.3 | 282 | 283 28.3 28.4 28.2 28.4 27.9
6 0 02 0.24 0.69 1.63 3.2 6.00 12.1
12 40 | 39.8 ] 39.8 39.4 38.6 37.6 34.4 26
15 28.3 | 28.3 | 28.3 28.3 28.3 28.8 28.4 27.9
18 0 0.2 0.69 1.69 3.08 6.1 12.1
20 20 | 199 | 19.7 18.55 17.9 15.9 12.3 2.04
24 40 | 398 | 39.8 39.4 38.7 37.5 33.1 26
Table 7
Sum
110. 37
T |
t ! < 1 0 50 | 100 200 500 1000 2000 5000
i
110 3 7| 110 | 109.56 | 109.34 | 108.46 | 106.37 | 102.96 | 96.25 | 178.76
0 150 | 149.36 | 149.14 | 147.86 | 144.97 | 140.36 | 130.75 | 104.86
3 138.3| 138.86 | 137.64 | 136.76 | 134.77 | 13L.16 | 124.65 | 106.66
6 110 | 109.76 | 109.68 | 109.15 | 108 10616 | 102.25 | 90.86
12 070 | 69.76 | 67.54 | 69.06 | 67.77 | 65.36 | 61.85 | 52.76
15 81.7| 81.26 | 81.04 | 80.16 | 78.07 | 74.16 | 67.85 | 60.86
18 110 | 110 109.8 | 107.77 | 104.68 | 99.88 | 90.15 | 66.66
20 130 | 129.46 | 120.04 | 127.01 | 124.27 | 118.86 | 108.55 | 80.8
2 | | 150 | 149.8 | 149.14 | 147.86 | 145.07 | 140.46 | 129.35 | 104.76
j 1 |

Fig. 1. shows the field of temperature complying with numerical resulte. We took the liberty to
repeat our former statement that the simplifications made earlier were fully justified, and the
simplified solution of the partial differential equation suits caleulation of temperature conditions.
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variables being:

t=20,3,6,12,15, 28, 20, 24 (h)

x =0, 50, 100, 200, 500, 1000, 2000, 5000 (m)

In calculating the cooling of the fluid along pipelines, the second-order
term in the differential equation was neglected. Now, the correciness of the
neglection is analysed and justified.

Summary

Our previous paper dealt with heat losses in pipelines during hours of peak operation.
The developed computation method to determine temperature drop and heat losses in hot
water networks during cyclic temperature variation was checked by measurements. The
computation method invelved some approximations, neglects those justified empirically and
by measurements. In this paper, the admissibility of the neglect will be theoretically ana-
lysed and justified.
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