# QUALITÄTSBEURTEILUNG DER SCHAFTFRÄSER AUS SCHNELLARBEITSSTAHL AUF GRUND VON STANDZEIT- UND KRAFTMESSUNGEN

Von

I. Bánhidi\*

Lehrstuhl für Fertigungstechnik, Technische Universität, Budapest,

(Eingegangen am 30. April, 1975) Vorgelegt von Prof. Dr. I. KALÁSZI

Die Entwicklung der Fertigungstechnologie in der Industrie ist heutzutage eine Schwerpunktfrage. Diese Tätigkeit läßt sich aber ohne die Entwicklung der spanenden Werkzeuge nicht vorstellen.

Die Forderungen an spanende Werkzeuge sind bekannt, die Wirkung der Änderungen der einzelnen Werkzeugkennwerte ist jedoch nicht klargestellt, besonders bei mehrschneidigen Werkzeugen. Wenn die Hersteller diese Kennwerte kennen, sind sie meistens imstande, die Qualität zu verbessern [1]. Die eindeutige Feststellung der Wirkung der Faktoren, die die Qualität der Werkzeuge beeinflussen, ist sehr kostspielig. Darum findet man oft Prüfmethoden, die für jede Bearbeitungsmethode empfehlenswert sind und eine allgemeine Gültigkeit haben [2]. Diese Methoden ermöglichen aber in der Regel nur einen relativen Vergleich der einzelnen Bearbeitungsverfahren. Viele Forscher haben bewiesen [3], daß die Versuchsergebnisse nicht übertragbar sind, wenn bei dem zu prüfenden Verfahren zusätzliche Faktoren auftreten, die im Modellversuch gar keine oder keine entscheidende Wirkung ausüben. Nach den Versuchen im Werk FORSZ mit dünnen spanabhebenden Werkzeugen kleiner Abmessungen wurde festgestellt, daß die Leistungsfähigkeit einiger Werkzeuge durch Werkzeugform und -abmessungen entscheidend beeinflußt wird [4].

Die in Serienfertigung hergestellten Werkzeuge können nur durch eine komplexe Prüfung zuverlässig beurteilt werden. Es ist zweckmäßig, den Spanbildungsvorgang je Werkzeugtyp und unter den kennzeichnenden Bearbeitungsbedingungen zu prüfen und die Leistungsfähigkeit des Werkzeuges zu bestimmen.

### 1. Spanabhebungsversuche mit Langlochfräsern

Die zu Spanabhebungsprüfungen angewandten Fräser wurden aus dem Handel beschafft. Die einzelnen Stücke wurden nicht ausgewählt, der Vorgang konnte also als Probenahme betrachtet werden, und auf Grund der Charak-

\* Teil einer Dr. Thesis. Arbeitstelle: Fabrik für Spanabhebende Werkzeuge.

teristiken der Proben ist es möglich, auf die Menge Folgerungen zu ziehen.

Die Versuche wurden mit Langlochfräsern der Abmessungen d = 14 und d = 20 mm durchgeführt. Diese wurden aus Schnellarbeitsstahl S-6-5-2 hergestellt. Die Meßwerte der wichtigsten Werkzeugmerkmale (Abb. 1) wurden statistisch ausgewertet und eine Normalverteilung vorausgesetzt. Die Berechnung wurde mit einem Risiko von 10% durchgeführt. Die Versuche entsprechen den betrieblichen Verhältnissen.



Abb. 1. Die Schneidewinkel des Langlochfräsers

Das Material des Werkstückes war ein normalgeglühter Kohlenstoffstahl C 45 mit einer Durchschnittshärte von  $HB = 195 \text{ kp/mm}^2$ ; die Werkzeugmaschine eine Vertikalfräsmaschine großer Starrheit und großer Leistung, Typ FB 50 V. Die Bearbeitungsmethode war Langlochfräsen ohne Kühlung.

Es wurde die Wirkung der Schnittgeschwindigkeit, des Vorschubs und der Spantiefe auf die Standzeit geprüft. Ferner wurde die Änderung der Komponenten der in den Bewegungsrichtungen des Tisches (Tischsystem) auftretenden Schnittkräfte in Abhängigkeit von den erwähnten Parametern und von dem Verschleiß gemessen.

Bei der Bestimmung der Standzeit- und Kraftgleichungen wurden nicht die am besten passenden Kurven gesucht, sondern es wurde geprüft, welche Änderung der Regressionskurven unter den gegebenen Bedingungen zulässig ist.

#### 2. Die Ergebnisse der Standzeitmessungen

Beim Langlochfräsen wird der Großteil der Zerspanarbeit durch die Eckschneide geleistet, die durch die Haupt- und Nebenschneide gebildet wird. Die Länge der wirksamen Eckschneide wird durch die Größe des Vorschubes und der Schnittiefe bestimmt. Aus der Eigenart des Nutfräsens folgt, daß die ursprünglich mit einem bestimmten Radius ausgebildete Kantenschneide während der Zerspanung eine sphärenartige Form annimmt, die Verschleißgeschwindigkeit ist aber entlang der Hauptschneide veränderlich. Die Ausmusterung der Langlochfräser wird durch den Verschleiß der Eckschneide bestimmt, entscheidend ist also die Größe der Abrundung.

Beim Messen wurde der Durchschnittswert des Maximalverschleißes auf der Freifläche der Hauptschneide berechnet. Als Kriterium für das Ende der Standzeit wurde ein Freiflächenverschleiß von  $\Delta = 0,35$  mm bei d = 14 mm Fräserdurchmesser und ein solcher von  $\Delta = 0,55$  mm bei d = 20 mm angenommen. Die Messungen wurden nach der Methode der kleinsten Quadrate ausgewertet. Die Berechnungen wurden mit einer Rechenmaschine Typ HP 9810 durchgeführt.

Bei der Arbeit gingen wir von der linear transformierten Form der Taylor-Gleichungen aus. Die Exponenten und die Konstanten wurden aus den Achsenschnitten der Geraden berechnet. Die Streuung und der Standardfehler sind:

$$\sigma_T^2 = \frac{\sum_{i=1}^N (\ln T_i - \ln \bar{T})^2}{N} \quad S_T^2 = \frac{\sum_{i=1}^N (\ln T_i - \ln T_{sz})^2}{N}$$

Der Korrelationskoeffizient:

$$r = \sqrt{1 - rac{S_T^2}{\sigma_T^2}}.$$

Die für verschiedene Vorschübe berechneten Exponenten und die Daten der Kurven sind in Tabelle 1 zu finden. Die Größe der Exponenten ist nicht gleich, demzufolge sind die *T-v*-Kurven nicht parallel. Die *T-v*-Kurven wurden so korrigiert, daß die einzelnen Regressionsgeraden um ihren Schwerpunkt bis zum Erreichen der gemeinsamen Richtungstangente verdreht wurden. Bei der Festlegung dieser Richtungstangente wurde mit dem gewogenen Mittelwert der einzelnen Koeffizienten gerechnet. Abb. 2 zeigt diese Korrektion. In den Abb. 3 und 4 sind diese korrigierten *T-v*-Kurven zu sehen.

Unserer Meinung nach spielt im Verlauf der Standzeitgleichung, neben dem mechanischen und dem Diffusionsverschleiß [5] und der Änderung der Verschleißgeschwindigkeit [6], die elastische Formänderung des Werkzeuges eine Rolle. Bei Werkzeugen, die einen dünnen Span abheben, ist die Standzeit auch Funktion des dynamischen Schlages im Werkzeugspaner [4, 7]. Aus den Abbildungen ist zu ersehen, daß sich die Stelle des Maximums bei Werkzeugen mit gleicher Geometrie der Schneide beim Zerspanen mit verschiedenen Vorschüben verändert. Bei einem großen Vorschub je Fräserzahn verschwindet das Maximum. Die Lage der Knickpunkte ändert sich auch dann, wenn sich die Abmessung des Werkzeuges und die Form der Schneide verändern. Die Stelle des Maximums der *T-v*-Kurven hängt also ab von

| T | ab | ell | e | L |
|---|----|-----|---|---|
|   |    |     |   |   |

|         |                                     |                                                                                                                |          |             |     |         |                       | korrigiert |          |         |                       |  |
|---------|-------------------------------------|----------------------------------------------------------------------------------------------------------------|----------|-------------|-----|---------|-----------------------|------------|----------|---------|-----------------------|--|
| d<br>mm | d e <sub>1</sub> v<br>mm/Zahn m/min | p<br>m/min                                                                                                     | n/min m  | $C_{T_{i}}$ | Cv  | r       | S <sub>T</sub><br>min | m          | $C_{Tv}$ | r       | S <sub>T</sub><br>min |  |
| 14      | 0,056                               | 28,6-39,3                                                                                                      | -2,26838 | 51 955      | 120 | 0,97279 | 1,06113               | -2,393     | 79 964   | 0,97132 | 1,06279               |  |
| 14      | 0,089                               | 30,8-48,2                                                                                                      |          | 339 900     | 134 | 0,98816 | 1,07656               | 2,393      | 159 272  | 0,98502 | 1,08646               |  |
| 20      | 0,112                               | 11,3-17,3                                                                                                      | 0,68678  | 10,893      | 7,5 | 0,88227 | 1,06722               |            |          |         |                       |  |
| 20      | 0,116                               | 22,1-44,6                                                                                                      | -2,94966 | 618 000     | 92  | 0,97645 | 1,18318               | -1,987     | 24  080  | 0,92299 | 1,34981               |  |
| 20      | 0,089                               | 16,9-42,2                                                                                                      | -1,23401 | 2212,6      | 523 | 0,93923 | 1,18173               | -1,987     | 27 126   | 0,74462 | 1,38360               |  |
| 20      | 0,177                               | 13,4-35,2                                                                                                      | -1,42170 | 2544,8      | 249 | 0,91369 | 1,21837               | -1,987     | 14 193   | 0,83835 | 1,80335               |  |
|         | <br>                                | real and a second s |          |             | I   |         |                       |            |          |         |                       |  |

$$T = \frac{C}{v^m}$$
 (min) und  $T = Cv^m$  (min)





- der Abmessung der Schneideform, der Qualit\u00e4t des Scharfschleifens, dem Material des Werkzeuges
- dem Zerspanungsparameter, meistens von der Größe des Vorschubes,
- der Starrheit und Präzision der Werkzeugmaschine.

Aus den bei verschiedenen Vorschüben festgestellten T-v-Kurven ist auch die Wirkung der Änderung der Vorschübe je Zahn abzulesen. Mit größerem Vorschub nimmt die Standzeit bis zum Erreichen eines bestimmten Wertes zu, die T- $e_1$ -Kurve hat also ein Maximum. Aus den Angaben der T-v-Kurven wurde die Funktion  $T = f(e_1)$  erhalten. Der Exponent wurde nach der dargelegten Methode korrigiert. Die Angaben sind in Tabelle 2 zu finden.

Aus den Standzeitmessungen ist festzustellen, daß ein verhältnismäßig kleiner Vorschub je Fräserzahl eine sehr ungünstige Wirkung auf die Standzeit der Fräser hat. Diese Wirkung wird dadurch verursacht, daß sich mit der Abnahme des Vorschubes die Verschleißverhältnisse verschlechtern. Eine weitere Verschlechterung ist zu beobachten, wenn die Abrundung der Schneide zunimmt.

Wegen des Knickpunktes der T-v-Kurven ist es unerläßlich, die optimalen Zerspanungsparameter zu suchen (Abb. 5).

|         |                    |                          |         |          |                 |         |           | korrigiert |      |         |                       |
|---------|--------------------|--------------------------|---------|----------|-----------------|---------|-----------|------------|------|---------|-----------------------|
| d<br>mm | v<br>m/min         | mm/Zahn                  | f<br>mm | <i>x</i> | C <sub>To</sub> | r       | Sa<br>min | x          | CTO  | r       | S <sub>T</sub><br>min |
| 14      | 30                 | 0,089-0,177              | 1       |          | 1,00            | 0,99329 | 1,04706   | -1,586     | 1,03 | 0,99326 | 1,04716               |
| 14      | 29                 | 0,089-0,177              | 1       | -1,57690 | 1,14            | 0,99028 | 1,05623   | -1,586     | 1,12 | 0,99026 | 1,05628               |
| 14      | 34                 | 0,089-0,177              | 1       | -1,57022 | 0,78            | 0,99302 | 1,04717   |            | 0,76 | 0,99297 | 1,04734               |
| 14      | 37                 | 0,089-0,177              | 1       | -1,59843 | 0,60            | 0,99217 | 1,05095   | -1,586     | 0,62 | 0,99214 | 1,05105               |
| 20      | 20                 | 0,088-0,177              | 1,5     | -0,88479 | 8,09            | 0,96371 | 1,07403   | -0,884     | 8,11 | 0,96371 | 1,07404               |
| 20      | 24                 | 0,088-0,177              | 1,5     | 0,88196  | 5,65            | 0,96199 | 1,07569   | -0,884     | 5,63 | 0,96199 | 1,07570               |
| 20      | 30                 | 0,088-0,177              | 1,5     | 0,88427  | 3,64            | 0,96520 | 1,07232   | -0,884     | 3,64 | 0,96520 | 1,07232               |
|         |                    |                          |         |          |                 | . 1     | l         |            |      |         |                       |
|         | $T = -\frac{1}{2}$ | $\frac{C_{Te}}{m}$ (min) |         | · .      |                 |         |           |            |      |         |                       |

| Tabelle | 2 |
|---------|---|
|         |   |



Abb. 5. v-e1-Kurven

Tabelle 3

| d<br>mm        | f<br>mm       | v<br>m/min                                                      | $e_1 \ { m mm/Zahn}$                            | m                         | x                           | C <sub>T</sub><br>min   | r                             | S <sub>T</sub><br>min |
|----------------|---------------|-----------------------------------------------------------------|-------------------------------------------------|---------------------------|-----------------------------|-------------------------|-------------------------------|-----------------------|
| 14<br>14<br>20 | 1<br>1<br>1,5 | $\begin{vmatrix} 30,3-48,2\\28,6-48,2\\13,4-44,6 \end{vmatrix}$ | 0,0880-0,1761<br>0,0555-0,0893<br>0,0880-0,2817 | 2,393<br>2,393<br>1,987   | $-1,586 \\ 1,327 \\ -0,884$ | 3540<br>4102820<br>3260 | 0,98347<br>0,94741<br>0,88088 | 1,08<br>1,13<br>1,34  |
|                | Т             | $=\frac{C_T}{v^m e^{\chi}}$ (mi                                 | in) und $T = \frac{C_T}{T}$                     | $\frac{r e_1^x}{m}$ (min) | ), wenn v                   | $> v_{T \max}$          |                               |                       |

Auch die Gleichung T = f(v, e) wurde aufgeschrieben. Die Daten sind in Tabelle 3 zu finden.

Der Konfidenzintervall der Standzeitgleichungen mit einem oder mehreren Veränderlichen wurde mit dem Bereich der Meßpunkte bestimmt, die die Regressionsgeraden liefern. Als Gültigkeitsgrenze der Richtungstangente wurden die berechneten und korrigierten Werte derselben gewählt. Die Gültigkeitsgrenzen der Gleichungen sind mit dem Konfidenzintervall der angewandten Fräserabmessungen ergänzt in Tabelle 4 zu finden.

## 3. Das Ergebnis der Kraftmessungen

Das angewandte Kraftmeßgerät ist mit einem gedehnten Oktogonalring ausgestattet, dessen Signalumformer ein Dehnungsmeßstreifen ist [8]. Das Gerät ist auf dem Tisch der Fräsmaschine montierbar und mißt gleichzeitig die Größe der Komponenten in Richtung des Vorschubs und der Schnittiefe.

Beim Nutenfräsen im momentanen Spanbogenwinkel-Intervall von  $0^\circ \le \varphi \le 180^\circ$  kommen die Spanungskraftverhältnisse des Stirnfräsens mit



Tabelle 4

Abb. 6. Komponente der Schnittkräfte in der Bearbeitungsebene.  $F_{xy}$ : Resultierende Schnittkräft in der Bearbeitungsebene



Abb. 7. Verlauf der Komponenten in Vorschubrichtung

einem Hauptschneideeinstellwinkel von  $\varkappa = 90^{\circ}$  zur Geltung. Es ist üblich, die räumlichen Schnittkräfte bzw. Reaktionskräfte in drei aufeinander senkrechte Komponenten zu zerlegen. Die in der waagerechten Ebene wirkenden Komponenten sind in Abb. 6 zu sehen. Die Änderung der Komponenten von  $F_x$  und  $F_y$  in Abhängigkeit vom Spanwinkel ist in Abb. 7 dargestellt. Die tangentiale Hauptschnittkraft  $F_T$  und die radiale Komponente  $F_R$  können berechnet werden:

$$\begin{split} F_T &= F_x \cdot \sin \varphi + F_y \cos \varphi \\ F_R &= F_y \cdot \sin \varphi + F_y \cos \varphi \end{split}$$

Nach Abb. 7 wurde an den wichtigsten Stellen die Größe der Komponenten  $F_T$  and  $F_R$  durch Konstruktion bestimmt und so wurden die in Abb. 8 dargestellten  $F_T(\varphi)$ - und  $F_R(\varphi)$ -Kurven erhalten.



Abb. 8. Verlauf der Hauptschnittkraft und der Radialkomponente

Zur Verminderung der störenden Wirkung des Schlages wurde mit einem Fräser von d = 14 mm eine Meßreihe durchgeführt, wo die beiden Komponenten mit einer einzigen Einspannung bei 17 verschiedenen  $v \cdot e_1$ -Wertpaaren gemessen wurden. Die Erfahrung zeigte, daß der Unterschied der Kräfte, die an zwei Zähnen des Werkzeuges auftreten, in Abhängigkeit von dem Vorschub und der Schnittgeschwindigkeit veränderlich ist. Bei kleinem Vorschub wird der eine Zahn nicht oder nur wenig arbeiten. Wird der Unterschied der auf zwei Zähnen des Werkzeuges auftretenden Kräfte ( $\Delta F$ ) zu  $\overline{F}$ ins Verhältnis gestellt, also die spezifische Kraftänderung untersucht (Abb. 9), ist es möglich, jene Schnittgeschwindigkeit bzw. jenen Vorschubbereich zu bestimmen, in die Kraftänderung am günstigsten ist.

Der Grund des hyperbolischen Charakters der spezifischen Kraftänderung ist darin zu suchen, daß infolge einer relativ größeren Kraftwirkung die elastische Deformation der Zähne die Grenze erreicht, bei der im Meßraum der meßbare Radialschlag des Werkzeuges während der Zerspanung ausgeglichen wird. Es scheint notwendig, zwei verschiedene Arten des Schlages zu unterscheiden, nämlich den statischen Schlag, der im, in der Werkzeugmaschine,



Abb. 9. Spezifische Kraftänderung in Abhängigkeit von der Schnittgeschwindigkeit und des Vorschubes je Zahn

eingespannten Zustand, also im Ruhestand, gemessen wird, und den dynamischen Schlag, der während der Zerspanung auftritt und nur indirekt meßbar ist. Der statische Schlag ist ein resultierender Schlag des Werkzeuges, der Spannelemente und der Hauptspindelenden. Der dynamische Schlag ist dagegen auch die Funktion der Zerspanungsparameter. Es darf aber nicht außer Acht gelassen werden, daß die Tendenz zum Ausgleich vorwiegend in der Phase des gleichförmigen Verschleißes zur Geltung kommt, bei der Anwendung eines abgenutzten oder übermäßig abgenutzten Fräsers ist das nicht feststellbar. Der dynamische Schlag, die Standzeit des Werkzeuges und der gleichmäßige Lauf der Werkzeugmaschine sind miteinander gegenseitig zusammenhängende Faktoren.

Die große Zahl der Messungen ermöglichte die Bestimmung der Kraftgleichungen bei verschiedenen Schnittgeschwindigkeiten nach der Methode der kleinsten Quadrate. Bei der Auswertung wurden nur die Durchschnittswerte der bei einem neuen Werkzeug auf zwei Zähnen gemessenen Maximalkräfte in Betracht gezogen. Die Berechnungen wurden für eine Einheitsschneidelänge durchgeführt. Der Exponent der Schnittiefe wurde nach Literaturangaben mit y = 1 angenommen. Als Ergebnis wurden die Zusammen-



Abb. 10. Kraftänderung in Abhängigkeit von der Spanndicke

hänge  $F_x = C_{Fx}e_1^{a_f}$  und  $F_y = C_{Fy}e_1^{k_f}$  ermittelt, die in Abb. 10 dargestellt sind. Die Daten der Kurven sind in Tabelle 5 zu finden. Wie bereits erwähnt, wurden die korrigierten Werte der Exponenten und der Konstanten bestimmt. Die Gültigkeitsgrenzen der Kraftgleichungen sind der Tabelle 6 zu entnehmen.

Unter den gegebenen Versuchsverhältnissen ist die Kraftmessung allein zur Qualitätsbeurteilung des Werkzeuges nicht ausreichend. Sie ist nur als Ergänzung der Standzeitmessungen anwendbar. Bei Werkzeugen, die dünne Späne abheben, ist die Prüfung der dynamischen Schläge und der elastischen Deformation für die Bestimmung der Parameter der spanabhebenden Bearbeitung wichtig.

Tabelle 5

| d  | F              | v     | c <sub>1</sub> |         | C <sub>F</sub> |         | SF      |       | ko        | rrigiert |                |
|----|----------------|-------|----------------|---------|----------------|---------|---------|-------|-----------|----------|----------------|
| nm | kp             | m/min | mm/Žahn        | x       | kp             | r       | kp      | x     | $C_F$     | T        | S <sub>F</sub> |
| 14 | F <sub>x</sub> | 28,8  | 0,0880-0,1761  | 0,35812 | 88,85718       | 0,88311 | 1,05025 | 0,574 | 139,14860 | 0,70473  | 1,07696        |
| 14 | Fy             | 28,8  | 0,0880-0,1761  | 0,40131 | 73,51390       | 0,79766 | 1,08133 | 0,494 | 89,12652  | 0,77612  | 1,08519        |
| 14 | F <sub>x</sub> | 22,0  | 0,0893-0,1786  | 0,51299 | 120,99908      | 0,91766 | 1,05951 | 0,574 | 137,27997 | 0,91114  | 1,06178        |
| 14 | Fy             | 22,0  | 0,0893-0,1786  | 0,49452 | 91,12677       | 0,86329 | 1,07812 | 0,494 | 91,02798  | 0,86329  | 1,07812        |
| 14 | F <sub>x</sub> | 36,5  | 0,0889-0,1750  | 0,70005 | 169,64155      | 0,98356 | 1,03146 | 0,574 | 131,69813 | 0,96749  | 1,04434        |
| 14 | Fy             | 36,5  | 0,0889-0,1750  | 0,49787 | 83,15327       | 0,84080 | 1,08033 | 0,494 | 82,50897  | 0,84078  | 1,08033        |
| 14 | F <sub>x</sub> | 30,0  | 0,0880-0,1761  | 0,72089 | 178,96431      | 0,99330 | 1,02144 | 0,574 | 132,97783 | 0,97245  | 1,04371        |
| 14 | Fy             | 30,0  | 0,0880-0,1761  | 0,58032 | 102,79454      | 0,96067 | 1,04334 | 0,494 | 86,33085  | 0,94998  | 1,04887        |
| 20 | F <sub>x</sub> | 21,9  | 0,0887-0,1760  | 0,86322 | 246,21472      | 0,93650 | 1,08902 | 0,770 | 201,98053 | 0,93111  | 1,09275        |
| 20 | $F_{v}$        | 21,9  | 0,0887-0,1760  | 0,80233 | 186,24633      | 0,92592 | 1,09027 | 0,741 | 163,49060 | 0,92322  | 1,09190        |
| 20 | F <sub>x</sub> | 11,1  | 0,0875-0,1750  | 0,79594 | 240,43553      | 0,99565 | 1,02164 | 0,770 | 227,53665 | 0,99153  | 1,02292        |
| 20 | $F_{v}$        | 11,1  | 0,0875-0,1750  | 0,68285 | 184,10415      | 0,98484 | 1,03518 | 0,741 | 208,32419 | 0,98125  | 1,03916        |
| 20 | F <sub>x</sub> | 34,4  | 0,0893-0,1785  | 0,78336 | 228,70442      | 0,89589 | 1,10625 | 0,770 | 205,70875 | 0,89576  | 1,10632        |
| 20 | $F_{v}$        | 34,4  | 0,0893-0,1785  | 0,73487 | 158,53409      | 0,96685 | 1,05175 | 0,741 | 160,56285 | 0,96681  | 1,05177        |
| 20 | $\vec{F_x}$    | 17,1  | 0,0893-0,1786  | 0,63601 | 155,94906      | 0,95775 | 1,05058 | 0,770 | 205,77870 | 0,93622  | 1,06214        |
| 20 | $F_{y}$        | 17,1  | 0,0893-0,1786  | 0,70392 | 153,02117      | 0,94715 | 1,06354 | 0,741 | 165,22620 | 0,94583  | 1,06432        |
|    | -              |       |                |         |                |         |         |       |           |          |                |

 $F = C_F e_1^x f$  (kp) f = 1 mm, b = d

| Tabelle | 6 |
|---------|---|

|                     | d              | $= 14 \text{ mm } 0,0880 \leq a$<br>f = 1  mm  a = a | $c_1 \leq 0,1786 \text{ mm/Zahr}$<br>0,574 $k = 0,494$ | 1            | $d = 20 \text{ mm } 0.0887 \leq c_1 \leq 0.1786 \text{ mm/Zahn}$<br>f = 1  mm  a = 0.770  k = 0.741 |                |                |                |  |  |
|---------------------|----------------|------------------------------------------------------|--------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------|----------------|----------------|----------------|--|--|
|                     | v = 28,8 m/min | v = 22 m/min                                         | v = 36,5 m/min                                         | v = 30 m/min | v = 21,9 m/min                                                                                      | v = 11,1 m/min | v = 34,4 m/min | v = 17,1 m/min |  |  |
| a                   | 0,358-0,574    | 0,513-0,574                                          | 0,574-0,700                                            | 0,574-0,721  | 0,770-0,863                                                                                         | 0,770-0,796    | 0,770-0,783    | 0,636-0,770    |  |  |
| $C_{Fy}$            | 89-139         | 121-137                                              | 132-170                                                | 133-179      | 202 - 246                                                                                           | 228 240        | 206-229        | 156-206        |  |  |
| k                   | 0,401-0,494    | 0,494 - 0,495                                        | 0,494-0,498                                            | 0,494-0,580  | 0,741-0,802                                                                                         | 0,683-0,741    | 0,735-0,741    | 0,704-0,741    |  |  |
| $C_{Fy_0}$          | 74-89          | 91                                                   | 83                                                     | 86-103       | 163-186                                                                                             | 184 - 208      | 156 - 161      | 153-165        |  |  |
| Y10                 |                | . 10,7-                                              | -12,7                                                  | ţ            | 2,2-4,2                                                                                             |                |                |                |  |  |
| α <sub>10</sub>     |                | 7,9-                                                 | - 9,9                                                  |              | 11,4-13,4                                                                                           |                |                |                |  |  |
| $\omega_{10}$       |                | 8,5-                                                 | -10,0                                                  |              | 11,7-12,9                                                                                           |                |                |                |  |  |
| α <sub>1110</sub>   | Ì              | 10,2-                                                | -12,2                                                  |              | 4,0-6,0                                                                                             |                |                |                |  |  |
| τ                   |                | 5,4-                                                 | - 6,4                                                  |              | 4,2- 5,2                                                                                            |                |                |                |  |  |
| Δτ°                 |                |                                                      | ≤ 0,25                                                 |              | $\leq 0.25$                                                                                         |                |                |                |  |  |
| cs <sub>1</sub> mm  |                | 0 –                                                  | - 0,1                                                  |              | 0 - 0,1                                                                                             |                |                |                |  |  |
| ⊿cs <sub>1</sub> mm |                | 5                                                    | <b>≦ 0,03</b>                                          |              | ≤ 0,03                                                                                              |                |                |                |  |  |

 $\Delta \gamma_1 = \Delta \alpha_1 = \Delta \omega_1 = \Delta \alpha_m \leq 05^{\circ}$ 

I. BÁNHIDI

196

#### 4. Die Zuverlässigkeit der Zerspanungsversuche

Bei der Beurteilung der Maßgenauigkeit der Langlochfräser ist die Maßstreuung der Spanwinkel innerhalb eines Werkzeuges wichtig. Die Toleranz der Spanwinkel der Fräser ist nach der ungarischen Norm meistens mit  $\pm 1^{\circ}$  bestimmt, die Norm gibt aber keine Begrenzung für die Maßabweichungen der verschiedenen Zähne desselben Fräsers. Diese Toleranz hat aber bei kleinen Winkeln eine große Bedeutung.

Der Korrelationskoeffizient der festgesetzten Standzeit- und Kraftgleichungen und der Standardfehler der Schätzung beweisen, daß die in Serienfertigung hergestellten Werkzeuge zur Aufnahme der Regressionskurven anwendbar sind. Die Versuche haben auch gezeigt, daß bei Werkzeugen von kleinem Format unter vorgegebenen Verhältnissen solche Werkzeuge anzuwenden sind, wo die Geometrie der Schneiden mehrerer Zähne nur wenig voneinander abweicht ( $\Delta x \sim 0.5^{\circ}$ ). Die Durchschnittsabweichungen aller angewandten Fräser haben nur eine sekundäre Bedeutung. Wenn die Durchschnittsabweichung den nach der Norm zulässigen Wert von  $\pm 1^{\circ}$  nicht überschreitet, ist der untersuchte Fräser für die Bestimmung der Zerspanungsgleichungen geeignet.

## Zusammenfassung

Die Verfasserin bestimmt durch Versuche die Standzeit- und Kraftgleichungen von in Serienfertigung hergestellten Langlochfräsern beim Nutenfräsen. Es wird nachgewiesen, daß die Standzeitkurven des Werkzeuges ein Maximum haben. Die Komponenten der Schnittkraft wurden in Richtung des Lang- und Quervorschubes der Maschine untersucht. Die Kraftgleichungen werden in Abhängigkeit von der Spandicke aufgeschrieben. Die Ursache des hyperbolischen Charakters der spezifischen Kraftänderung wurde geprüft. Bei dem Schlag des Werkzeuges ist ein statischer und dynamischer Schlag zu unterscheiden. Die Bedingungen der Anwendbarkeit der in Serienfertigung hergestellten Werkzeuge

Die Bedingungen der Anwendbarkeit der in Serienfertigung hergestellten Werkzeuge für die Bestimmung der Regressionskurven wurden geprüft. Es wird nachgeweisen, daß unter festgelegten Versuchsbedingungen Werkzeuge anzuwenden sind, bei welchen die Geometrie der Schneiden mehrerer Zähne eines Fräsers nur wenig abweichend ist. Für die Qualitätsbeurteilung werden Standzeitmessungen vorgeschlagen. Die Methode zur Standzeitmessung ist die Aufnahme der T-v-Kurve.

Symbole

| Ь              | mm                     | Fräsbreite                                                             |
|----------------|------------------------|------------------------------------------------------------------------|
| $cs_1$         | $\mathbf{m}\mathbf{m}$ | zylindrische Facette an der Hauptschneide, senkrecht zur Hauptschneide |
| -              |                        | gemessen                                                               |
| $\Delta cs_1$  | mm                     | Unterschied zwischen auf zwei Zähnen gemessenen Facetten               |
| d              | mm                     | Durchmesser des Fräsers                                                |
| е              | mm                     | Spandicke                                                              |
| eı             | mm/Zahl                | Vorschub je Zahn                                                       |
| f              | mm                     | Schnittiefe                                                            |
| F              | kp                     | Schnittkraft                                                           |
| $\overline{F}$ | kp                     | durchschnittliche Schnittkraft (arithmetisches Mittel)                 |
| $F_{x}$        | kp                     | Komponente in Richtung des Quervorschubes                              |
| $F_{v}$        | kp                     | Komponente in Richtung des Langvorschubes                              |
| •              |                        |                                                                        |

I. BÁNHIDI

| N              |        | Zahl der Messungen                                          |
|----------------|--------|-------------------------------------------------------------|
| r              |        | Korrelationskoeffizient                                     |
| $S_F$          |        | Standardfehler der Schätzung der Kraftgleichungen           |
| $\dot{S_T}$    |        | Standardfehler der Schätzung der Standzeitgleichungen       |
| σ              |        | Standardabweichung                                          |
| T              | min    | Werkzeugstandzeit                                           |
| $\overline{T}$ | $\min$ | Durchschnittsstandzeit (arithmetisches Mittel der Meßwerte) |
| $T_i$          | min    | gemessene Standzeit                                         |
| $T_{sz}$       | min    | berechnete Standzeit                                        |
| v              | m/min  | Schnittgeschwindigkeit                                      |
| ve             | mm/min | Vorschub des Werkstückes pro Minute                         |

#### Literatur

- 1. MIHÁLYI, F.: Zielprogramm No. 21, Abschnitt IV, Hervorgehobene Zerspanungsforschungen, Komplexe Begutachtung von Zerspanungswerkzeugen. Studie SZERGELEM, Manuskript (1969). (21. sz. Célprogram Kiemelt Forgácsolási Kutatások. IV. fejezet, Forgácsolószerszámok komplex minősítése. Tanulmány SZERGELEM, Kézirat 1969.)
- 2. BAKONDI, K.: Die Bestimmung der Bearbeitbarkeit der Metalle. Kandidatendissertation. Manuskript, Budapest (1956). (A fémek megmunkálhatóságának meghatározása. Kandidátusi értekezés. Kézirat. Budapest 1956.)
- 3. VICTOR, H.-MÜLLER, H.: Zerspanversuche mit Kleinstbohrern. Werkstattstechnik, Zeitschr. für ind. Fertigung, No. 2 (1972).
- 4. BÁNHIDI, I.: Qualitätsbeurteilung von Langloch- und Fingerfräsern aus Schnelldrehstahl mittels Zerspanung II. Konf. für Werkstoffe und Werkzeuge. Budapest (1971). Vortrag.
- 5. POURNY, J. L.-EUGENE, F.: Mise en évidence et mesure des deux types d'usure des outils en acier rapide. Le Génie Civil, 138, No. 2. Paris (1961).
- 6. NAGY, O. T.: Einige Fragen der Qualitätsbeurteilung der Schnellarbeitsstähle. I. Konf. für Werkzeugstoffe und Werkzeuge. Miskolc (1968). — Vortrag. (Gyorsacélok minő-sítésének egyes kérdései. I. Szerszámanyagok és szerszámok konf. Miskolc, 1968.)
- 7. BÁNHIDI, I.: Vorversuche mit Langlochfräsern Ø 6 und Ø 14 mm. Bericht SZERGELEM.
- Manuskript (1970). 8. TU Budapest Lehrstnhl f. Fertigungstechnologie: Projektierung und Fertigung von zur Messung mehrerer Komponenten geeigneten Kraftmessungsanlagen. Schlußbericht TU Budapest. Manuskript, Budapest (1969). (Több komponens mérésére alkalmas erő-mérőberendezések tervezése és gyártása. Zárójelentés. Kézirat, Budapest 1969.)
- 9. TU Budapest Lehrstuhl f. Fertigungstechnologie: Zerspanungsprüfung der Schaft-fräser durch Kraftmessung, Bericht. Manuskript, Budapest (1970). (Szárasmaró forgácsolási vizsgálata erőméréssel. Témajelentés. Budapest 1970. febr. Kézirat.)

Ibolya Bánhidi, H-1202 Budapest, Mártírok útja 210.