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1. Introduction 

The problems related to the analysis and design of networks can be 
classified as follows: 
According to the character of the problem: 

a) design of new networks, 
b) analysis of existing networks. 

According to the structure of the network: 
a) problems of radial networks, 
b) problems of looped networks. 

According to the type of flow: 
a) steady-flow pattern (consumption constant in time), 
b) transient-flow pattern (consumption changing in time). 
In the present paper, a question is picked out at random from the 

complex sphere of problems, viz., the design of new radial networks for steady 
flow. It should be noted that this problem is one of the most important and most 
common one, especially for district heating networks. 

2. Formulation of the problem 

Conditions governing the design are the following: 
a) The structure of the network is given. This is not an essential restric

tion because in the overwhelming majority of practical cases the local features 
permit little variation in the structure of the network. In these cases network 
can be individually dimensioned and optimized, eliminating the need for an 
extremely complex topological optimization, of rather theoretical interest. 

b) The physical characteristics and flow equations of the flowing medium, 
as well the physical (frictional) characteristics of the pipelines are given. 
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c) The place and magnitude of consumption are given. The relation
ships for the consumption in a given unit (dwelling unit, building, housing 
estate) and its expected growth are known. 

d) As it appears from items a, band c, exact values and expected varia
tions in time of the input data (pipe friction coefficient, internal roughness 
of pipe walls, variation of consumption in time) are not known, and cannot 
be exactly determined by mathematical or even computer means. 

3. Topology of the netw·ork 

In computer designing pipe net,v·orks drawings cannot be used directly. 
The topology of the network has to be formulated in a computer language, 
hence by digits. Mapping the network design is facilitated by the graph theory. 
Graph is the geometric representation of the set Y of objects of any nature 
with their relationships V. The individual objects are the elements or nodes 
of the graph, their pairswise relationships are called branches. The symbol 
of the graph is: G = (Y, V). Branches ...vith a direction constitute a directed 
graph. The graph representation of pipe networks consists in regarding the 
individual pipe sections as the branches of the graph; the places of consump
tion and the branch points as the nodes of the graph. The graph obtained in 
this way is an abstraction of the network. 

Accordingly, the concept of a radial network is defined as a connected 
graph where every node is connected of another subject to the relationship: 

(n and m being the number of nodes and branches of the graph, respectively). 
Several methods are used for the numerical formulation of the relationships 
expressed by the graph, depending on the character of the problem. 

The node-to-node description defines an n by n matrix, of element aij: 

if (Yi' Yj) E V 
if (Yi'Y) ~ V 

The node-to-branch description defines an n by m matrix, of element 

if branch j is not incident to node i 
if branch j is incident to node i 

The Pair's characteristic series describes the graph by a series of length 
2n - 1 of the code of nodes (by a vector containing 2n - 1 elements). 

The "from ... to ... " description defines a 2 by m matrix with elements 
a1,j and aZ,j being the two end points of branch j. 
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By properly numbering the branches and nodes of the graph, the "from ... 
to ... " matrix can be made replaceable by a single vector of m elements. 
In this description, branch j connects the j-th and arth nodes. 

This is called the "simplified from ... to ... " description. It should be 
noted that the described methods in their actual form, are suitable to describe 
radial graphs, and they are easy to extend to directed graphs containing 
loops. 

The node-to-branch matrL"C permits unambiguous formulation the two 
Kirchhoff's laws and besides for the calculation of the compression -work, 
needed in the network. 

4. Hydraulic conditions 

The pressure drop in individual pipe sections is given by relationships 

). = f(Re, d/k) 
and 

L1p = fU., L, V, d, k) 

due to PR.~NDTL, COLEBROOK, K_.tRl\L'\'N and NIKURADZE. 

In models "\vith pipe diameters as continuous variables, the pipe friction 
coefficient ). is determined on the basis of the diameter estimated for the 
given section. 

Discrete models permit to exactly determine ) .. 
The shape resistances are expressed by equivalent pipe lengths. Our 

model is valid for a plain ground, thus the pressure drops are uniform from 
the feed point to the end point of the network 

(1) 

5. The mathematical model 

To design the pipe network means to determine the pipe section diam
eters. Indicating a system of diameters by vector symbol d: 

From among vectors d, however, only those meeting the hydraulic conditions 
enter into consideration. The totality of possible solutions is set L. (L c En)' 
For L = 0, there is no solution. 

Since in general set L contains a large population, the economic efficiency 
of each solution L; C Lis measured by an objective function: some scalar 
function f(d) assigned to vector d. Solution L; is more efficient than L j if 

f(d i
) <f(dj

). 
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A dO E L programme, the most efficient among the possible ones, is called the 
optimal programme. 

Essentially, the problem consists in simply determining vector d giving 
the extremal value of function 

max {j(d)jd EL} . 

For the solution of this optimum problem, either deterministic or stochas
tic, static or dynamic either models can be established, with continuous or 
discrete variables. 

Evidently, the real design problem is better approached by discrete 
models, since actually the diameters cannot have but standard values. On the 
other hand, discrete models are more difficult regarding computer treatment. 

5.1. Continuous models 

The expounded conditional extremal value problem is solved by the 
method of Lagrange multipliers. 

The process minimizes the sum of the yearly investment and operation 
(pumping and heat loss) costs of the network (Kh annual). The problem is 
to find the minimum of the annual costs, provided the hydraulic conditions 
are met (Eq. 1). 

The so-called modified cost 

Km = KIJ annual + ~ ;'j (~ Ll Pt - Po) (2) 
i 1)1 

The investment and operation costs can be formulated as a power function 
of vector d. Taking Llp = f(d) into consideration, d = (d1, d z' ... dm ) and 
I. = (1'1' I,z, •.. I,v) are unknown in the equation. 

The extremal value of Km is obtained by solving the equation system 

Inasmuch also feed pressure Po is required, the optimal feed pressure is deter
mined by 

The diameters obtained in this way are other then standard. 
The serics of standard diameters is obtained by transformation 

T(d) = dn 
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The "merit" of the transformation process depends on how the objective 
function f(dn) approximates the optimal solution, that is, 

f(T(d» - f(d) -+ M in. 

It is a result worth mentioning that in the case of a given feed pressure LlPm 
the ratio of pipe diameters is constant and independent of the feed pressure 

d~l) = (Pb1»)1/5 
d~2) Pb2) 

Thus, optimizing the network for a given pressure Po' then the optimal dimen
sions for any other Po are obtained by multiplying with a constant calculated 
from the ratio of two Po values. 

5.2. Discrete models 

Recently, discrete models have come to the foreground of interest. Of 
the methods of mathematical programming, Gomory's general algorithm of 
integer value programming, the simplex method, of linear programming the 
branch and bound method, the methods of assignment and of dynamic pro
gramming have been investigated. In principle, every method proved to be 
suitable for solving the optimization of pipe networks with discrete variables. 
Dynamic programming proved to be rather suitable for solving pipe network 
design problems in practice ,,,ith a view on computer technique and running 
time. Pipe network design by discrete dynamic programming means to solve 
a multi-stage decision system. 

Though the technique of dynamic programming permits to examine 
stochastic systems, too, the physical character of that problem is better 
reflected by the deterministic model. To solve a design problem is simply to 
determine the optimal set of decisions. Or defined according to Bellman's 
principle of optimality: "an optimal path leading form node Yo to node 
Ym(Yo, ... , Yi , ... , Y m ) may contain only such partial paths (Yi , ... , Y j , 

where 0 ~ i ~ m, i <j ~ m) which are optimal between Y; and Yj"" 
The state of the system is determined in each stage by a variable, in 

a given case by a scalar Zi' the variable of state of the system. At stage i 
a decision is made, that is, the decision variable Ui of the system, assumes 
some value. 

The state of the system at stage i + 1 is determined by the transition 
function of the system: 

Zi+ 1 = gi(Zi' U;) 

The outcome of the decision (stage return) is given by function }';(Z;, Ui)' 
The possible values of the state variables of the system are determined by the 
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previous and subsequent states, according to the following relationship: 

Zi E rizi- 1 

and 

respectively. 
Accordingly, Zi E rizi- 1 n ri~\Zi+l' where operator gives the set of 

state i obtainable from the stage i - 1. Thus, the intersection of the two sets 
means the space of possibility of state i. The general model of the decision 
system is shown in Figs 1 and 2 for cases of a serial and for a non-serial system, 
respectively. 

Fig. 1 

Fig. 2 

Legend. U - decision li:Jriable 

Z - state variable 

g[Z, U) - transition functian 
frZ,UJ - stage return 

A serial system represents a pipe network ,~ithout branches, while a non
serial system (branching or connected system), a radial pipe network ,~ith 
arbitrary topology. Depending on whether the initial state Zo' or the final 
state Zn of the system, or both are given, a final state, an initial state, or an 
initial-final state problem, can be spoken of. 

If the endpoints of the radial network are considered as the starting 
point and the feed point of the pipe network (the pump) as its endpoint, 
for a given feed pressure Po' an initial-final state problem is involved. If Po 
is to be determined rather than given a final state problem is spoken of. 

For a given network optimization problem, the concepts in the decision 
model correspond concretely to following: 

decision variable 
state variable 

u 
Z 

diameter 
pressure 

d 
p 



transition function 
stage return 
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g(Z, U)
f(Z, U) -

pressure drop 
cost function 

215 

P 
f(d, p) 

Optimization starts from the endpoints of the network and proceeds 
gradually towards the feed point, making use of the fundamental recursion 
equations of dynamic programming: 

F1(Zl) = max!l(Zl' U1) 
u, 

Fn(Zn) = max (fn(Zn, Un) + Fn-1(Zn-l)) 
Un 

provided 

Zi+l = gi(Zi' UJ 
Thus, the optimal solution of the n-stage system is determined stage-wise. 
The direction of progress is made unequivocal by the precedence relation 
existirIg on the graph. At the intersection of two branches the optimization 
equation is somewhat modified: 

where the superscript indicates the subsystems provided by the n-th node 
of the graph, as a root. 

The developed algorithm is suitable for the optimization of radial net
works with an arbitrary topology. 

Initial-final state problems involve to divide the available pressure into 
K equal parts. In this way, the system can be both in stage m and state K. 
The optimal states belonging to the individual stages and the optimal standard 
diameters determining them can be determined by the above recursion for
mula of discrete dynamic programming. A final state problem can be reduced 
to that of finding the optimal path. 

Networks of a size occurring in practice (a few hundred sections) can 
be designed at a moderate running time (a few minutes). The practical utility 
of this design process is enhanced by the optimization affecting only on stand
ard diameter series meeting the rate limitation. 

6. List of symbols 

n number of nodes in the graph 
m number of branches in the graph 
;. pipe friction coefficient or Lagrange's multiplier 
d diameter 
K roughness 
Re Reynolds number 
L pipe length 
V section flow 
p pressure 
Jp pressure drop 
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dn standard diameter 
Km annual cost 
Km modified cost 
c A c B A is the subset of B 
n A n B is the common part of A and B, its intersection 
E at E A ai is an element of A 
V i for every i 
T transformation operator 

Summary 

Computer methods for designing and optimizing radial networks have been examined, 
together with the data needed, and the expected accuracy of the process - compared to the 
"manual" calculation methods. 

The network topology is described by means of the graph theory and the matrix cal
culus. 

The mathematical model is comprised of design and hydraulic conditions. In the case 
of continuously changing diameters, the model is solved by Lagrange's multiplier method. 
In the case of standard diameters, the solution is given by discrete dynamic programming. 
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