DIE WÄRMETECHNISCHE UNTERSUCHUNG GLASEMAILLIERTER RÜHRAPPARATE

Von

L. VIMMER-M. PARTI-K. MOLNÁR

Lehrstuhl für chemisches Maschinenwesen und landwirtschaftliche Industrie, Technische Universität Budapest

> Vorgelegt von Prof. Dr. S. SZENTGYÖRGYI (Eingegangen am 26. April, 1973)

Einleitung

Auf zahlreichen Gebieten der chemischen Industrie werden glasemaillierte Rührapparate verwendet, in denen die durchzuführenden Verfahren durch eingesetzte Rührelemente intensifiert werden. Der Emaillierbarkeit wegen weichen diese von allen anderen angewendeten Rührelemententypen ab. Daher können hier die in der Fachliteratur angeführten Kriterialgleichungen zur Bestimmung der Transportkoeffizienten (Wärmeübertragungs- und Stoffaustauschkoeffizient) nicht angewendet werden.

Emaillierte Rührapparate wurden in Ungarn von der Fabrikseinheit LAMPART der Emailindustriewerke entwickelt. Die angewendeten Spezialrührelemente sind in *Abb. 1* dargestellt.

Im Auftrage des Betriebs LAMPART wurden von uns die sich in Rührapparaten abspielenden Transportvorgänge untersucht und die Transportkoeffizienten an Hand von Versuchen bestimmt. In diesem Beitrag sind die für den Wärmeübergang erhaltenen Ergebnisse zusammengefaßt dargeboten.

I. Theoretische Grundlagen

1. Berechnung der Anheizzeit [1]

Wird der Füllinhalt des Apparats durch das in den Duplikatorteil eingeführte Heizmittel geheizt, so verläuft die Temperaturänderung der Medien – bei konstanter Heizmitteltemperatur – in der in *Abb. 2* angeführten Weise.

Wird die differentiale Wärmebilanz

$$dQ = G \cdot c \cdot dt$$

des Vorgangs aufgeschrieben und ferner die Grundgleichung der Wärmeübertragung

$$dQ = k \cdot F \cdot (T-t) \cdot d\tau$$

Ab5. 1. Emaillierte Anker- und Impeller- (Doppelflügel)- Rührelemente

Abb. 2. Stofftemperaturänderungen beim Anheizen, als Funktion der Zeit

angewendet, so ergibt sich folgende Beziehung:

$$\frac{dt}{T-t} = \frac{k}{c} \cdot \frac{F}{G} \cdot d\tau.$$
(1)

Vorausgesetzt, daß der aus der Wärmeübergangszahl und der spezifischen Wärme gebildete Quotient während des Anheizens (im gegebenen Temperaturintervall) konstant bleibt, gilt

$$\int_{t_1}^t \frac{dt}{T-t} = \frac{k \cdot F}{G \cdot c} \int_0^\tau d\tau ,$$

und nach dem Integrieren ergibt sich die Beziehung

$$\ln \frac{T - t_1}{T - t} = \frac{k \cdot F}{G \cdot c} \tau , \qquad (2)$$

aus der die Anheizzeit:

$$\tau = \frac{G \cdot c}{k \cdot F} \cdot \frac{t - t_1}{\varDelta t_{\log}} \tag{3}$$

ausgedrückt werden kann, wobei

$$\Delta t_{\log} = \frac{(T - t_1) - (T - t)}{\ln \frac{T - t_1}{T - t}}$$
(4)

ist und somit die übertragene Wärmemenge während des Anheizens errechnet werden kann, und zwar lautet dann

$$Q = k \cdot F \cdot \varDelta t_{\log} \cdot \tau . \tag{5}$$

Also ist für Rührapparate — obwohl sich der Vorgang in der Zeit ändert — die Grundgleichung (5) für Wärmeaustauscher mit dem mittleren Temperaturunterschied aus Gleichung (4), zur Ermittlung der übertragenen Wärmemenge geeignet.

2. Berechnung der Abkühlzeis [1]

Wird der Füllinhalt des Rührapparats mit Hilfe eines Mediums von konstanter Eintrittstemperatur gekühlt, so erfolgt eine, an der Kühlmittelseite wahrnehmbare (sich entlang der Oberfläche ändernde Temperatur) oder latente (konstante Temperatur entlang der Oberfläche) Wärmeübertragung. Für den Fall, daß eine, auch an der Kühlmittelseite wahrnehmbare Wärmeübertragung stattfindet, ist die Temperaturänderung entlang der Oberflächenkoordinate in irgendeinem kurzen Zeitintervall in *Abb.* 3 dargestellt, – ange-

Abb. 3. Verlauf der Momentantemperaturen beim Abkühlen, als Funktion der Oberflächenkoordinate

9

nommen, daß die Temperatur des zu kühlenden Stoffs für den Augenblick konstant ist.

Schreiben wir die differentiale Wärmebilanz des Vorgangs und die Grundgleichung der Wärmeübertragung auf, ergeben sich folgende Beziehungen:

$$dQ = -G \cdot c \cdot dt,$$

 $-G \cdot c \ dt = W \cdot c' \cdot (T - T_1) \cdot d\tau,$
 $W \cdot c'(T - T_1)d\tau = k \cdot F \cdot \Delta t_{\log} d\tau,$

wobei Δt_{\log} die zu dem Augenblick τ gehörige logarithmische mittlere Tempe raturdifferenz bedeutet, und zwar gilt

$$\Delta t_{\log}(\tau) = \frac{(t - T_1) - (t - T)}{\ln \frac{t - T_1}{t - T}} .$$
(6)

Wird der Ausdruck (6) für die legariikmische mittlere Temperaturdifferenz in die Grundgleichung eingesetzt, integriert und die Vereinfachungen durchgeführt, erhält man

$$T = t - (t - T_1)e^{-\frac{k \cdot F}{W \cdot c'}}, \qquad (7)$$

und diesen Wert in die differentiale Wärmebilanz wieder eingesetzt und integriert, ergibt

$$\tau = \frac{G \cdot c(t_1 - t)}{W \cdot c' \left(1 - e^{-\frac{k \cdot F}{W \cdot c'}} \, \varDelta t_m\right)} \,. \tag{8}$$

wobei die zum Abkühlen erforderliche Zeit

$$\Delta t_m = \frac{t_1 - t}{\ln \frac{t_1 - T_1}{t - T_1}}$$
(9)

bestimmt werden kann.

Erfolgt die Abkühlung durch das Vorhandensein latenter Wärme, so kann die in Kapitel 1 geschilderte Rechenmethode und im Fall wahrnehmbarer Wärme die in Kapitel 2 abgeleitete Formel zur Erzielung günstiger Ergebnisse angewendet werden.

3. Anwendung der Ähnlichkeitstheorie

Aus der Fachliteratur [2] geht hervor, daß der Strömungswärmeaustausch durch die Navier – Stokessche Differentialgleichung, die Kontinuität, das Gesetz von der Erhaltung der Energie und das Newtonsche Kühlgesetz (Wärmeübertragungsgleichung) gekennzeichnet wird.

Diese mathematische Analyse beschränkt sich meistens bloß auf die Aufgabestellung, die analytische Lösung ist nur in einigen, besonders einfachen Fällen möglich. — Von Nusselt wird darauf hingewiesen, daß man auch ohne die Gleichungen zu integrieren, für das experimentelle Studium des Vorgangs wertvolle Folgerungen ziehen kann, wenn dieser geometrisch, hydraulisch und thermisch einem als Grundvorgang gewählten Vorgang ähnlich ist.

Das mathematische Modell des Prozesses wird durch die den physikalischen Prozeß beschreibenden Gleichungen, mit ihren Eindeutigkeitsbedingungen geliefert, die mit Hilfe der Formelanalyse auf eine dimensionslose Form transformiert werden können. Als Ergebnis der Formelanalyse werden Invarianten, geometrische Simplexe sowie Viskositätskennziffern erhalten. Unter den Invarianten werden sich auch diejenigen Ähnlichkeitskriterien befinden, die beim Einführen der Eindeutigkeitsbedingungen einen Wert erhalten. Die Ähnlichkeitskriterien sind die unabhängigen Veränderlichen. Der dimensionslose Ausdruck, der beim Einführen der Eindeutigkeitsbedingungen keinen Wert erhält, ist die abhängige Variable. Die Lösung der dimensionslosen Gleichungen führt zu funktionellen Beziehungen, wobei die abhängige Variable durch das Potenzfunktionsprodukt der Ähnlichkeitskriterien, Simplexe, Kennziffern ausgedrückt wird [3]. Solche funktionelle Beziehungen werden Kriterialgleichungen genannt.

Für die Wärmeübertragung bei Rührapparaten lautet die Kriterialgleichung:

$$Nu = f\left(Re, \ Pr, \ \frac{\mu}{\mu_{fal}}, \ \frac{D}{d}, \ \frac{w}{d}, \ \frac{H}{d}, \ \frac{h}{d}, \ldots\right), \tag{10}$$

bzw. für geometrisch ähnliche Apparate gilt:

$$Nu = f\left(Re, \ Pr, \ \frac{\mu}{\mu_{fal}}\right),$$

und in Form einer Potenzfunktion ist:

$$Nu = C Re^{a} Pr^{b} \left(\frac{\mu}{\mu_{\text{fal}}}\right)^{e} .$$
(11)

An Hand der durchgeführten Versuche trachteten wir, die Konstanten in Gl. (11) zu bestimmen.

II. Bestimmung der Kriterialgleichung der Wärmeübertragung

1. Wärmedurchgangszahl an der Innenseite

Der gesamte Wärmewiderstand des Rührvorgangs bei Wärmeübertragung ist

 $\frac{1}{k} = \frac{1}{\alpha_b} + \frac{1}{\alpha_k} + R_{sz},$ $\frac{1}{\alpha_b} = \frac{1}{k} - \frac{1}{\alpha_k} - R_{sz},$ (12)

bzw.

also müssen die an der rechten Seite der Gleichung angeführten Ausdrücke bekannt sein, um daraus die Wärmedurchgangszahl berechnen zu können. An Hand dieser Berechnung kann die abhängige Variable der Kriterialgleichung, die Nusselt zahl bestimmt werden. Der zugehörige Wärmewiderstand in Gl. (12) setzt sich aus dem Widerstand der Emailschicht und dem der wärmeübertragenden Apparatwand (bzw. der etwaigen Ablagerungen) zusammen. Bei Heizung kann die Wärmedurchgangungszahl an der Außenseite aus der Nusseltschen Beziehung ermittelt werden, da hier gesättigter Dampf kondensiert wurde.

Da dieses Verfahren zahlreiche Fehlermöglichkeiten enthält, wurde statt dessen die mittlere Wandtemperatur gemessen und aus dieser die Wärmedurchgangszahl an der Innenseite errechnet.

Die Rechenmethode wird an Hand der *Abbildungen* 4 und 5 erläutert. Auf Grund der Abbildungen gilt für den Wärmedurchfluß:

beim Heizen:
$$q = k(T - t) = k'(t^* - t),$$

beim Kühlen: $q = k(t - \overline{T}) = k''(t - t^*).$ (13)

Somit wird die übertragene Wärmemenge beim Heizen:

$$Q^* = k' F_b \Delta t' = \frac{2\lambda_{\text{fal}}}{\delta} F_{\text{k}\delta z} \left(t^* - t_{fb}\right) = \alpha_b F_b \left(t_{fb} - t\right),$$

wobei

$$\Delta t' = t^* - t = (t^* - t_{fb}) + (t_{fb} - t).$$

beim Kühlen:

$$Q^{*} = k^{"} F_{b} \Delta t^{"} = rac{2\lambda_{\mathrm{fal}}}{\delta} F_{\mathrm{k}\delta_{z}}(t_{fb} - t^{*}) = lpha F_{b}(t - t_{fb}),$$

wobei

$$\Delta t'' = t - t^* = (t - t_{fb}) + (t_{fb} - t^*),$$

Abb. 4. Temperaturverteilung beim Anheizen

Abb. 5. Temperaturverteilung beim Abkühlen

ist. Aus diesen Beziehungen können ferner

$$\frac{1}{k'} = \frac{\delta}{2\lambda_{\text{fal}}} \frac{F_b}{F_{\text{k}\bar{o}z}} + \frac{1}{\alpha_b},$$

$$\frac{1}{k''} = \frac{\delta}{2\lambda_{\text{fal}}} \frac{F_b}{F_{\text{k}\bar{o}z}} + \frac{1}{\alpha_b}$$
(14)

abgeleitet und k' bzw. k'' an Handvon Gl. (13) in Kenntnis der Wärmedurchgangszahl@bestimmt werden.

2. Bestimmung der Wärmedurchgangszahl

Werden die Ergebnisse der Versuchsmessungen in die Beziehungen (2) und (8) eingesetzt, so ergibt sich beim Heizen:

$$\frac{T-t}{T-t_1} = \exp\left(-\frac{k\cdot F}{G\cdot c}\cdot \tau\right),$$

beim Kühlen:

$$\frac{t-T_1}{t_1-T_1} = \exp\left[\left(1-e^{-\frac{k\cdot F}{G\cdot c}}\right)\frac{W\cdot C}{G\cdot c}\cdot \tau\right].$$

Hieraus folgt, daß man — wenn die "momentanen" Triebkräfte im Zähler im Laufe des Prozesses auf einen Nenner von konstantem Wert bezogen werden und dies in einem logarithmisch-linearen Koordinatensystem als Funktion der Zeit aufgetragen wird — eine Gerade erhält, aus deren Steilheit die Wärmedurchgangszahl ermittelt werden kann.

3. Bestimmung der Konstanten der Kriterialgleichung

Schreibt man das Potenzfunktionsprodukt der Kriterialgleichung auf, ergibt sich

$$Nu = C \operatorname{Re}^{a} \operatorname{Pr}^{b} \left(\frac{\mu}{\mu_{\text{fal}}}\right)^{e}, \qquad (11)$$

und nach Umordnung ensteht

$$Y = \frac{Nu}{Pr^{b} \left(\frac{\mu}{\mu_{\text{fal}}}\right)^{e}} = C Re^{a}.$$
 (15)

Die Werte der Konstanten *b* und *e* wurden an Hand der Daten aus der Fachliteratur sowie durch Probieren erhalten. Es wurde angestrebt, die beim Kühlen und Heizen erhaltenen Ergebnisse durch dieselbe Kriterialgleichung auszudrücken. Der häufigste Zähigkeitsindex beträgt 0,14, doch sind auch andere Werte üblich. Als Exponenten der *Prandil*zahl und des Viskositätsquotienten ist es zweckmäßig, folgende Werte anzusetzen:

$$b = \frac{1}{3},$$

$$e = 0,24.$$

III. Versuchsmessungen

1. Der Versuchsapparat

Die Versuchsmessungen wurden mit einem von dem Betrieb LAMPART hergestellten, noch unemaillierten Rührautoklav von 250 *l* Inhalt vorgenommen, wodurch es möglich war, die Wandtemperatur zu messen. Die Meßeinrichtung ist in *Abb. 6* dargestellt. Der Apparat ist doppelwandig, von außen durch eine Asbestschicht isoliert.

Während des Heizversuchs wurde Heizdampf – unter konstantem Druck – aus zwei, einander gegenüber angeordneten Leitrohren in den Heizraum eingeführt. Das entstehende Kondensat wurde nachher durch einen thermodynamischen Kondensatabscheider in einen wassergekühlten Nachkühler geleitet. Die aus den Nachkühler austretende Kondensatmenge wurde während des Heizens mehrmals gemessen.

Das Kühlmittel (Kühlwasser) gelangte während des Kühlvorgangs durch das, am doppelwandigen Apparatteil mit Kreisringquerschnitt befindliche,

Abb. 6. Schaltbild der Meßeinrichtung

untere Speiserohr in den Kühlraum und wurde durch das obere Dampfeinleitrohr abgeführt. Die Menge des Kühlmittels wurde während des Kühlvorgangs konstant gehalten und die Stetigkeit der Menge mit einem Rotameter kontrolliert.

Das Rührelement der Versuchseinrichtung wurde durch einen stufenlosen Gleichstrommotor angetrieben, wodurch die Drehzahlen während des Versuchs beliebig gewechselt werden konnten. Als Rührgut wurde eine wäßrige Glyzerinlösung gewählt, deren Viskosität von der Temperatur stark abhängig ist. Dies ermöglichte einen breiten Bereich für die Reynoldszahl zu erfassen.

2. Die Versuchsmeßmethode

Durch kontinuierliches Messen wurden folgende Größen ermittelt: Drehzahl des Rührelements, Temperatur des inneren (gerührten) Mediums, mittlere Wandtemperatur, Eintrittstemperatur des Heizmittels, Druck des Heizmittels, Menge des Heizmittels, Ein- und Austrittstemperatur des Kühlmittels, Menge des Kühlmittels.

Die Temperatur der gerührten Flüssigkeit wurde mit Hilfe von zwei Thermoelementen gemessen. Die Meßfühler wurden in der Hauptmasse der Flüssigkeit, an verschiedenen Stellen, radial eingeführt. Die Meßwerte zeigten keine bedeutenden Abweichungen.

Zwecks Messung der Wandtemperatur wurden Meßzapfen in die Apparatwand eingebaut, in die zuerst Thermoelemente eingelötet wurden. Die Meßfühler der Thermoelemente wurden entlang der Mittellinie der Apparatwand, d.h. entlang der beiden Erzeugenden des Apparats, in fünf verschiededenen Tiefen unter dem Flüssigkeitsspiegel eingeführt.

Einige wesentliche, geometrische Kennwerte der Apparatur – für die von uns angewendeten beiden Rührelementetypen – sind in *Tabelle 1* zusammengefaßt.

Nützlicher Apparatinhalt	250 Liter	250 Liter
Rührelement-Typ Innendurchmesser des Behälters Durchmesser des Rührelements Dicke des Rührelements Flüssigkeitsspiegel des Kühl- bzw. Heizstoffs Heiz- bzw. Kühlfläche Wandstärke des Apparats Abstand des Rührelements vom Apparatboden Abstand des Rührelements von der Apparatwand Innendurchmesser der Duplikatur Drehzahlbereich Viskositätsbereich Temperaturbereich	Anker (Abb. 1) D = 776 mm d = 705 mm w = 60 mm H = 700 mm $1,87 \text{ m}^2$ 12 mm 75 mm $h_0 = 30,5 \text{ mm}$ 838 mm 20-120 U/min 2-22 cP 20-100 °C	Impeller (Abb. 1). D = 776 mm d = 540 mm H = 700 mm 1,87 m ² 12 mm 75 mm 838 mm 20-120 U/min 2-22 cP 20-100 °C

Tabelle I

3. Arbeitsverlauf der Auswertung

Auf Grund der Meßwerte wurden zuerst die Wärmeübertragungskoeffizienten aus den Gleichungen (2) und (8) erfaßt, nachfolgend konnten in Kenntnis derselben die Wärmedurchgangszahlen an der Innenseite, unter Anwendung der Gl. (14) errechnet werden.

Auf Grund der bekannten geometrischen Abmessungen und Stoffkennwerte läßt sich Y nach Gl. (15) als Funktion der *Reynoldszahl* in einem doppellogarithmischen Koordinatensystem graphisch darstellen. Aus der Steilheit und dem Achsenabschnitt der Geraden können die Konstanten der Kriterialgleichung ermittelt werden.

4. Meßergebnisse

Unsere Meßergebnisse sind in den Abbildungen 7, 8 und 9 zusammengefaßt.

Impeller-Rührer ohne Stauplatte (Abb. 7):

$$Nu = 0,343 \ Re^{2/3} \ Pr^{1/3} \left(rac{\mu}{\mu_{\mathrm{fal}}}
ight)^{0,24},$$

Impeller-Rührer mit Stauplatte (Abb. 8):

$$Nu = 0.39 \ Re^{2/3} \ Pr^{1/3} \left(\frac{\mu}{\mu_{fal}}\right)^{0.24},$$

Ankerrührer ohne Stauplatte (Abb. 9):

$$Nu = 0.46 \; Re^{0.62}, \; Pr^{1/3} \left(rac{\mu}{\mu_{ ext{fal}}}
ight)^{0.24}.$$

Die umfassende Bearbeitung aller Meßergebnisse ist in unseren Versuchsberichten zu finden [4, 5].

² Periodica Polytechnica M. 18/1

Abb. 8. Bestimmung der Konstanten der Kriterialgleichung für Apparate mit Stauplatten, im Falle von Impeller-Rührelementen

Abb. 9. Bestimmung der Konstanten der Kriterialgleichung im Falle von Anker-Rührelementen

Nomenklatur

a b		Konstante Konstante
c, c'	$\left[\frac{\text{kcal}}{\text{kg} \circ C}\right]$	spez. Wärme
С	["8, 0]	Konstante
d [m]		Durchmesser des Rührelements

d		Differenzierungszeichen
D	[m]	Apparatdurchmesser
e		Konstante
\mathbf{F}	$[m^2]$	Wärmeübertragungsfläche
G	[kg]	Stoffmenge
\mathbf{h}	[m]	Abstand des Rühelements vom Apparatboden
\mathbf{H}	[m]	Höhe des Flüssigkeitsspiegels
k, k',	$k'' \left[\frac{kcal}{m^2, h, \circ C} \right]$	Wärmedurchgangszahlen
n	$\left[\frac{1}{\sec}\right]$	Drehzahl
\mathbf{R}_{sz}	$\left[\frac{\mathrm{m}^2,\mathrm{h},^{\circ}\mathrm{C}}{\mathrm{kcal}}\right]$	zugehöriger Wärmewiderstand
q	$\left[\frac{\text{kcal}}{\text{m}^2, \text{h}} \right]$	Dichte des Wärmestroms, Wärmebelastung
Q	[kcai]	Wärmemenge
Q*	$\left[\frac{\text{kcal}}{\text{h}}\right]$	Wärmemenge in der Zeiteinheit
t, t*	[°C]	Temperatur
Т	[°C]	Temperatur
Т	[°C]	arithmetisches Mittel der Eingangs- und Ausgangstemperatur des Kühlstoffs
⊿t	[°C]	Temperaturunterschied
w	[m]	Breiteabmessung des Rührelements
W	$\left[\frac{\text{kg}}{\text{h}} \right]$	Durchflußmenge in der Zeiteinheit
Y		der in Gl. (15) definierte Wert
α	$\left[\frac{\text{kcal}}{\text{m}^2, \text{ h, }^\circ\text{C}}\right]$	Wärmeübertragungskoeffizient
δ	[m]	Wandstärke
λ	$\frac{\text{kcal}}{\text{m, h, °C}}$	Wärmeleitzahl
μ	$\left[\frac{\mathrm{kg}}{\mathrm{m, h}} \right]$	dynamische Viskosität
Q	$\left[\frac{\text{kg}}{\text{m}^3}\right]$	Dichte
τ	[h]	Zeit
		Die Indizes beziehen sich auf:
		1 Eintritt, 2 Austritt, b Innenseite (innere), fb innere Wandseite, fal Wand, k Außenseite (äußere),

- köz log m mittlere, logarithmische, mittlere Werte.

 2^*

L. VIMMER und Mitarb.

Dimensionslose Zahlen

$$Nu = \frac{\alpha_b \cdot D_b}{\lambda} \quad Nusseltzahl$$

$$Pr = \frac{\mu \cdot c}{\lambda} \quad Prandtlzahl$$

$$Re = \frac{d^2 \cdot n \cdot \varrho}{\mu} \quad Reynoldszahl$$

Zusammenfassung

In diesem Beitrag werden die Erkenntnisse über die Wärmeübertragung bei emaillierten Autoklaven beschrieben, auf die die Versuche der Verfasser aufgebaut sind.

Auf Grund der erhaltenen Ergebnisse wird eine Vorausabschätzung der Wärmeübertragungseigenschaften ermöglicht. Die Versuche wurden zwecks Meßbarkeit der Temperatur im Zustand vor dem Emaillieren vorgenommen und nachfolgend im emaillierten Zustand wiederholt. Es konnte jedoch kein wesentlicher Unterschied festgestellt werden.

Literatur

- 1. Technische Universität Budapest, Lehrstuhl für chemisches Maschinenwesen und landwirtschaftliche Industrie. Versuchs-Schlußbericht Nr. 17/1970. 2. MIHEJEV, M. A.: A hőátadás gyakorlati számításának alapjai. Tankönyvkiadó Vállalat,
- Budapest, 1972. (Grundlagen der praktischen Berechnung der Wärmeübertragung) 3. Szücs, E.: Hasonlóság és modell. Műszaki Könyvkiadó Vállalat, Budapest, 1972. (Ähnlich-
- keit und Modell).
- 4. Technische Universität Budapest, Lehrstuhl für chemisches Maschinenwesen und landwirtschaftliche Industrie. Versuchs-Schlußbericht Nr. 1/1972.
- 5. Technische Universität Budapest, Lehrstuhl für chemisches Maschinenwesen und landwirtschaftliche Industrie. Versuchs-Schlußberich+ Nr. 16/1972.

Dr. László VIMMER Dr. Mihály Parti

Dr. Károly MOLNÁR

H-1521. Budapest