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Introduction

Over the past three years, several papers have treated the determination
of flow occurring around rotating cascades of air foils [1], [2]. The plane airfoil
cascade is a mapping of a row of blade profiles [3] arranged on a surface with
rotational symmetry, as is usual in an impeller (Fig 1). Theoretical considera-
tions lead to a second type of the Fredholm integral equation which determines
the absolute velocity along the profile contour [1]:
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The kernel K is limited and continuous [2] but the function Kj; is singular
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Axial flow

Usually the flow is considered as proceeding in meridional streamlines
of eylindrical form. In this case, the correspondent of the peripheral velocity
in the straight cascade is a constant. In the same manner b(x) = b, = b, and

consequently Cp, = Cp, = 0.
Substituting:
en(2) = uyn($) = uy(l7) cos 6(C)
B = wlE) ) = )+ ) sin 6()

Eq. (1) reduces to:
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With the help of the residue theory, it is not difficult to see that:
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Substituting the value of I, as determined above in Eq. (2), we have
# — i@w} (£ K1 (5:8) [dL’] = wey cos 0() + ey sin 6(8) (3)
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Relation (3) is the well known equation for axial flow

Mixed flow

In the following considerations, we shall begin by writing an integral
equation applicable to determining the relative velocity, knowing that
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and using approximating values of Cy, and Cg, [1]
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Eq. (1) takes the dimensionless form
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Putting 0 = 6({) and 0" =

= 6({’) for convenience, we obtain

% *
e __@{KI .1 } (aer] = — 20

...v



56 L. R. EREMEEF

sin B e e 1 C vt o B N
— Ql;lt (&uf (") sin 67 dl’) + - d)u;‘, () [le sin §” 4+ Ky cos 8 ) el +
(K) &)

IR | ey Rarmrresl L

for {”—{ functions @ and ¥ are known from reference [4]

ri
4 tgoy sin b - [—7

r -
gj%a £ N2 1 (4 "2

2 (£ =P+ m—1)
@t N —1n

279 (§— ¥R+ (g— )

therefore the integral

1 . . e
J= ——-@ui‘, (C) [Kysin§’ + Kyjeos 8] d] =
; ) |

= L@u*\, &) [w(:,:’) cos (0 + 6" — D({,L) sin (A + 0')] ez’
; )

will be transformed

(Y D | O R
J=¢{[—;cos(0~§—6’)——t—sm(9+0)]u;(’,)———

g cos (0 + 6) +

-+ 77'—77' sin (f +— u;féidg’{_:_
(S — &’)2 _§_ (_)7__77/)2 ( )] ( ) l

s g
: uy() @[ "/!‘» - N2 cos (6 +0,) +
E=P+@m—n)

2a — =17
(K)
ST w—:-e')]id:f-
E— P t@—ny

The first integral can be computed numerically. The computation of the latter
can be made analytically with no difficulty.
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Hence, Eq. (4) may be written as:
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Results and conelusion

The solution of the integral equation can be reduced to the solution of a
linear equation system, using Gaussian quadrature. The contour (K) is divided
into two parts K, and K, the ends of which are the leading edge and the trailing
edge. Since the abscissas and weights of Gaussian quadrature are symmetrical
about the middle of the interval, such a division ensures a concentration of
points in regions of great curvature.

The condition of a smooth flow at the trailing edge will be achieved by
the restrictions W({,) = — w¥({,) if n points are assumed on the contour.

Typical results are shown in Figs 2 and 3. Fig. 2 presents dimensionless
circulations [™ for different numbers of points, with a view to increased accu-
racy. The convergency is good.

Fig. 3 illustrates the velocity distribution over the blade.
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An analysis is presented for finding out velocity distribution on a blade
given by its geometry. The method outlined above seems to he one of the best
for the numerical approach to the problem.

Notations in the straight cascade

x co-ordinates in the Z plane;

{ = f+iy pointof the profile contour;

t blade pitch;

b width of the channel in the merldxonal section:
¢ absolute wvelocity:

w relative velocity:

C basic flow velocity:

o3
Cp velocity induced by the variation of the width of the partial c¢hannel:
U, the counterpart correspondent of the peripheral velocity in straight cascade;
0, volumetric flow between two blades in the laver of thickness

blade circulation
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