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1. It is well known that, for e small, both Van del' Pol's equation 

U - e(l - u 2)Z! 

.and Rayleigh's equation 
.. (1 . ") . 0 u - e - u- u + u = 

(1) 

(2) 

have a unique non-constant periodic solution. It is interesting to note that if 
Van del' Pol's equation is modified by the addition of the term eUs 

.. (1 " . ?). 0 U - e - u- - u- u + U = (3) 

1:he resulting oscillator (3) has a unique periodic solution for all positiye values 
of e, no matter how large (cf. [2]). 
Here we shall consider a class of self-excited oscillators, i.e. 

ii - e[l - rr(H)]li +1p(u) = 0 ( 4.) 

where q(H) and lp(U) will be defined later. 
Since the class of oscillators (4) is response to stochastic excitation, and 

since under certain conditions to he specified later (cf. [2]), it possesses a 
unique periodic solution llO(t) of period T, so the perturbed class of self-excited 
.oscillators 

e(l - r(H))u + ~.'(u) = .u y (~ , u, it, ft, T J (5) 

is considered,' where e > 0, .u is a small parameter and the perturbation 
(eCI, is periodic in t with period T. 

It will also he assumed that the period of the perturbation is controllable. 

The results of this paper are mainly based on those of papers [2], [6], [7]. 
u 

Let 1peCl be an odd function, u~)(u) > 0 for u .' 0 and P(ll) = \,1p(t)dt a 
iJ 
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1 
positive, strictly increasing function. Assume further that H(U,ll) = 2 zi 2 + 

lJI (u) and rpsCl is a positive strictly increasing function, such that 

cr(Co) = 1, 0 < Co < :x, and lim cr- 2 • drridH = o. 
H-= 

Under thesc conditions Caughey and Payne [2] proved that the class of self
excited oscillators (4) has a unique periodic solution uo(t). Its least (positive) 
period will be denoted by To-

Eq. (3) is a special case of Eq. (4) with rp(H) = 2 Hand lp(U) = u. 
It is assumed without loss of generality that 

Introducing the notations 

x~ = !L, 

Eq. (4) is reduced to the system 

,1; = f(x), 
where 

The periodic solution of (8) cOlTesponding to the solution !Lo(t) of (4<) is 

The first variational system of (8) corresponding to p(t) is 

where 

Y = f~ (p(t))y with r (p(t)) = [0 1 J. 
Ct.l(t) Ct.~(t) . 

Ct.1(t) = - S uo(t) r(H . 1p(u o(t)) - 1p'(uo(t)), 

Ct.2(t) = s[l-r! -zi~(t)crH]' 

(6) 

(7) 

(8) 

(9) 

(10)· 

(11) 

The system (10) is a linear system with To·periodic coefficients and has the 
periodic solution 

p(t) = col[zlo(t), Ct.3(t)], 

of period To' where Ct.3(t) = s [1 - r((H)]zlo(t) -1p(uo(t)). 
The scalar form of (10) is 

Yl = Y2' 

Y2 = Ct.1(t)Yl Ct.2(t)Y2' 

(12) 
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By eliminating Y2 we obtain 

(13) 

One solution of (13) is cleady zi lJ(t). A second solution of (13) is found by setting 
)'1 Zlo(t)v (t) in (13). The result is 

i s 
)"1 = vo(t) = zlo(t) J [u O(S)]-2 [exp J cxz(T)dT] ds. (H) 

o 0 

Howeyer, z'o(t) must be properly defined at zeros of uo(t), since at such points 
(H) is meaningless. It is clear from (14) that 

vo(O) = _1_ = 1 
zio(O) a 

(15) 

Let Yo(t) denote the fundamcntal matrix solution of the system (10) for 'which 
Yo(O) = U,( U is the unit matrix,) holds, 

(16) 

Also the principal matrix of (10) is 

Co = Yo(To) = [~ (17) 

According to Liouville's formula, the Wronksian determinant W·(t) = 
det[YLJ(t)], for which W(O) = 1, is 

t 

W(t) = Zlo(t)vo(t) - V O(t)cx3(t) = exp [J 'X~(s)ds] . (18) 
o 

Thus the characteristic multipliers of (10) (i.e. the eigenvalues of the principal 
matrix Co) are 1 and the folIo·wing expression: 

TO 

W(To) = exp [J' x2(t)dt]. (19) 
o 

Now let us consider the perturbed class of oscillators (5) reduced by the 
substitution (7) to the system 

x = f(x) pg ( : ' x, p, T,) (20) 
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where x andf(x) ale as defined before and 

(21) 

Here we want to emphasize that the perturbed system (20) can be treated, 
provided that we kno·w (nothing else but): 

I) a unique periodic solution p(t) of the unperturbed system (8), 
II) the fundamental matrix solution of the first variational system of 

the unperturbed system (8) corresponding to the solution p(t). 
We shall assume that 1 is a simple characteristic multiplier of (10) 

T, 

(i. e. r Ct.2(t)dt -;-L 0) . 
o 

2. Consider the perturbed system 

x = f(x) + fig (-;- , x, fi, T) (20) 

where the right-hand side is periodic in t with period T, and analytic [although 
much less would suffice for the discussion here] in the region It X Q X I Lt X IT 
where: It = {t : - w < t < w}, Q is an open connected region of the ·t·wo

dimensional plane, I Lt = {p : ; f1 ; < Ct.}, for some Ct. > 0, and IT = {T : I T -
- To i< 13} for som~ 13, 0 < j3 < io' 

According to the above conditions and M. Farkas's general theorem 

2 (cf. [6]), for each small value of I fl I and the parameter i ft ! (defined there), 
the system (20) has a unique periodic solution x(t; fl' fl) with period i(fi,ft) 
(provided that Tell, fl) is substituted into (20) for i). Let 

(22 ) 

denote the corresponding unique periodic solution of (5), for which IIp( fl; p,fl) = 
= 0 holds. The functions i(ft, fl) and IIp(t; ,U, 1t) are analytic in the neighbour

hood of,Ll = 19 = 0, and i(O, 0) = io IIp(t; 0, 0) = llo(t). 
Now Poincan§'s method will be worked out for the approximate determi

nation of the periodic soh~tion x(t; p, if) of the system (20) up to the first approxi
mation. 

THEORE~I 1 

Let the conditions stated in this section hold, then the perturbed equa
tion (5) has a unique period 
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where 
TO 

(-'l) = _ J yeT) [v (T) - VoC" 0) U (T)] dT (23) ·I V WeT) 0 a[l- W(.o)] 0 , 
o 

and the unique periodic solution 

T, 

U (t: 11. fJ) = u (t - 1J) ...L It { vo(·o)W(·o) J yeT) li (T)dT...L 
p , r' 0 I ~ 1 _ W(.o) WeT) 0 I 

I-if 
r(p.J1) ro 

o 

J
" Y~T) [U(T)VO(S - fJ) - vo(r)lio(t - 1J)] dT} O(fl), (24) 

WeT) 

where 

PROOF: Using the substitution 

t = fJ STep, fJ) (25) 

the system (20) and its periodic solution x(t; p,fJ) assume the forms: 

dx [ (' a; = T(fl,fJ) f(x) + fig S fJ , x, p, T(p,d J 
T(p, fJ) } 

(26) 

and 
1p(S: p, fJ) = x(fJ + s-r(,u, fJ); p, 79) (27) 

respectively. Expand the solution 1p(S; ,u, fJ) and the function Ttu, fJ) for fixed 
{j by powers of p up to the first approximation, i.e. 

It is clear that x(t; O,fJ) = pet - fJ), .0(19) = T(O,19) = To' and 

(28) 

(29) 

1p°(S; 19) = 1p(S; 0, fJ) = x(fJ + STo; 0, fJ) = pes To), (30) 

The function 1p is obviously periodic in S ·with period one and wch is, as a con
sequence, 1pO(s; fJ) and 1p1(S, fJ). 

Substituting the expansions (28) and (29) into (26) and equating the 
corresponding coefficients of / on both sides, we have: 

5 Periodica Polytechnica ~I. 18/1 
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° d1p°( s, D) f( ( » f1 : = TO P S TO , 
ds 

1. d1pl(S, D) _ f'( ( )) l( on) I ( f1. ds - TO x P S T J 1p S, 'U I Tog S 

It is easy to prove that the system of equations given above determine 1pl and 
Tl uniquely 'when subject to the conditions that 1pi(O, D) = 0 and lp1(s,D) is 
periodic in S with period one. 

After long but easy calculations we obtain the expression (23) for T1(D) 
and the two components of 1j)l(s; D), i.f'. 

and 

T, 

'1j)I(S D) = Vo(STo)W(To) J' y(r) it (r)dr...L T S U, (ST )...L 
1 , 1 _ W(To) W(r) 0 I 1 ° ° I 

° ST, 

+ f ·),(r) [- uo(r)Vo(STo) + vo(r)uo(sTo)]dr 
W(r) 

o 

!(S on) = .Vo(STo)W(To) fTD )/(r) u' (r)dr () 
"'., ,'u 0 TlS X3 STo -+ 
,- 1 - W(TO) W(r) 

° 

According to (7) and hy using (30) we have: 

Thus 

IIp(t; p, D) = PI To + p1jJi , D + oeu). (
t-D 1 t-D) 
T(Il, &). TeU, D) 

(31 ) 

(32) 

(33) 

Expanding again the first term on the right-hand side of the last equation into 
power series in p, we ohtain the expression (24), and by that the theorem is 
proved. 

3. Now we are going to study the stahility of the solution x(t; p, D) of 
the perturbed system (20). The first variational system of (20) corresponding 
to x(t; p, D) is 

(34) 

. x = x(t, p.,f)) 
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Let Y(t; (.I, fJ) be the fundamental matrix solution of (34) for which Y(O;O, 0) = 

= U (U is the unit matrix) holds. The principal matrix C((.I, 1J) of (34.) corre
sponding to Y(t; p, fJ) is then 

C(p, iJ) = Y(i(p, fJ); p, fJ) .. (35) 

Also C(O,O) = Co(O) = Y( i 0; 0,0) = Y o( i 0) is the characteristic matrix of 
system (10). Let also }.(p, fJ) be the characteristic multiplier of system (34) 
for which 1.(0, 0) = 1 holds. }.~(O, 0) denotes the partial derivative of }(p,f}) 
with respect to ,u at p = fJ = O. 

THEORE;\I 2. 

Let the hypotheses of theorem 1 be satisfied, there are rh > 0 and Qz > 0 
such that in the region 

(36) 

}(,u, fJ) is a real valued analytic function of its arguments (.I and fJ, and if 
TO J 'X2(t) dt <0, then the periodic solution x(t; p, H) of the perturbed system (20) 

o 
with period TeU, If) is asymptotically stable for .u and 1) that are in the region 
(36) and satisfy the condition 

,uJ.;'(0, 0) < 0 
where 

};'(O, 0) = - fTo ~ ("_t__ ,zlo(t), IlO(t), 0, iO) [vo(t) - __ V,,-,o(...:io,,-,-) __ uo(t) ] dt. 
• W(t) Tn . a[1 - W(io)] 
o 

(37) 

PROOF: The first part of the theorem is a consequence of M. Farkas's 
theorem 3 (cf. [7]) and of (19). Only the formula (37) is left to be proved. 
Since the matrix Ceu, fJ) is analytic in its argument, so it can be expanded in 
the form 

ceu, fJ) = C"(1) + pO(fJ) + ,u 2R((.I, 1)), 

R(,u, {j) is analytic. 
Let c~, d and lli be the iti: row of the matrices of CO(O), Cl(O) and II and 
(- It d(i.; p, fJ) = det [cell, fJ) - ;.U] be the characteristic polynomial of 
C(,u, fJ). According to NI. Farkas's theorem: (cf. [7]) and to the notations defined 
there, we have 

d(l.; 0, 0) = i 1 - I. aVo(io) I' 
o aVo(io) - A 

d;'(l; 0, 0) = 1 - W(iO) , 

5* 
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T, 

C1(0) = T1(0)fXp( TO)) YO( TO) YO(TO) S Y01(t)B(t, O)dt , (38) 
o 

where 

B(t, 0) = [j;X(P(t))X~(t; 0, 0) + g~ ( ;0 ' pet), 0, TO) J Yo(t), (39) 

with 

where 

and 

< (t, 0, 0) = 1p1 ['_t ,0) _ pet) t T1(0) , 
To J To 

15 1 = - 8u o(t)[lp'(U o(t))CPH + CPffHlp2(UO(t))] - ljJ"(uo(t)) , 

152 = - 81p(uo(t))[cpH u5(t)CP;fH] ' 

~3 = - 8[3 uo(t) CPH + ug(t) CP;fH] , 

g~ ('_t ,p(t), 0, TO] = [ 0, 
To ! Yx, 

o l 
, J' ?'X2 

(40) 

(41) 

(42) 

where ?J~l ( :0 ' pet), 0, TO) and Y~2 ( :0 pet), 0 To I are the partial derivatives of 

the function )' (~, x, p, T) with respect to Xl and Xz evaluated at p = {J = 0 

and X = pet). 
Thus by the quoted theorem of [7], we have 

}.~(O. 0) = 1 {det 11 Ch 
. W(To) - 1 C~1 

(43) 

Consider the periodic vector 

z(t) = _1_ [;; (t) _ Vo(TO) ex (t) - v (t) ...L Vo(To) it (t)l (44) 
Wet) 0 a[l _ W(TO)] 3' o· I a[l _ W(To)] o· 

of period TO in t. It is clear that the row vector z(t) satisfies the equation 

z = - zD{p(t)) . 
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Also it is easy to prove that x~(t; 0, 0) satisfies the system 

x~ = j~(p(t)) x~(t; 0, 0) + g (:0 ,pet); 0, 'io) 

After long but simple calculations, substituting the expressions (39), (40), (41) 
and (42) into (38) and using (43) and (44) we get: 

"'0 
;':,(0,0) = - - avo(~ 'il(O) + J' z(t) [j~(p(t))<(t; 0, 0) + 

1 - W('io) 
o 

(45) 

Taking into account the periodicity ofj;(p(t)) and g (:0 ,p(t), 0, 'io) , it is easy 

to prove that . 

TO 

r z(t) r j~ (p(t)) x~(t; 0, 0) 
• L 

g~ ( :J p(t),O, 'io] dt = 

o 

aVo(-iO) 'i1(0) 

1 - W('io) 

To 

-J z(t) g; ( :0 ,pet), O''io) dt. 
o 

Substituting this into (45) we get expression (37) and this completes the proof 
of the theorem. 
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Summary 

The perturbation of a class of self-excited oscillators is considered. Conditions for exist
ence. uniqueness and stability of a periodic solution are given. Poincare's method is used to 
obtain expressions for the unique periodic solution, its period and for the stability criteria. 
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