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M. FARKAS [1,2] considered the perturbed system 

x =f(x)+w (+.' x, fl, r), (1) 

where x, f and rare n-dimensional vectors, t, fl and r are real scalars. He obtain
ed general results pertaining to the existence and stability of the D-periodic 
solution of (1). Then I. FARKAS, M. FARKAS [3] and H. M. EL OWAIDY [4] 
have considered perturbed van der PoPs and Lienard's equation in detail and 
obtained the actual determination of D-periodic solution and an effective 
form of the stabilitv criterion. 

In the present paper the above results are extended to general perturbed 
second order (section 1) and third order equations (section 2). 

1. Consider the scalar differential equation 

.. I ( • ) (' t . ) U ,g U, It = fLi' -:;' It, X, ,U, r , (2) 

where fl is a small parameter. We shall suppose that (2) satisfies the follo'~ing 
conditions: 

i) The functions g and}' are analytic in the region 

where 

It = {t: -=< t + -=}, 

Q an open and connected region in the (u, u) - plane, 

I,u = {fl : i fl I < ex;}, ex; > 0, 

I,={r:IT-Tvl<p}, O<P<TO' 

ii) The function i' is periodic in t with period T ElT' g and i' are also 
periodic in It with period aT = uoTo; where a o is a constant. In the case a o ~ 0, 

1* 
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Q is supposed to have the following property: if (u, u) E Q, then (u 
E Q, -00 < t < 00 

iii) The unperturbed equation 

ii g(u, u) = 0 

has a non-constant D-periodic solution uo(t) with period io > 0 and with 
coefficient a o' 

We replace the equation (2) by the equivalent system 

. . t ) 
x = f(x) + pr (-;. , x, ,u, T , (3) 

'where 

o I 

Xl' X 2' P, i.Jj. 

Obviously, for f1 = 0 the first variational system of (3) corresponding to the 

solution pet) = col (uo(t), uo(t)), 

j. = r(p(t)))" (4) 

has a non-trivial periodic solution pet) and thus 1 is a characteristic multiplier 
of (4). Using Liouville's formula the other characteristic multiplier is given by 

\Ve can assumc without loss of generality that 

:M. FARKAS [1] has shO'wed that for 1 to I, :: XO - pO li, : l1- ! and iT - io 1 suf
ficiently small the solution x(t; to' xo, p, i) can he written in the form 

Here 

X = x(t; fJ, po + h,,u, i). 

x(fJ; fJ,pO + h,,u, i) = pO + h, 

pO = p(O) = col (u~, u~) = col (u o (0), uo(O)), 

h = col (0, h2 ). 

As a consequence of theorem 1 of [1], we have the following statement: 
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Theorem 1. If the condition 

is satisfied, then to all p, 0, which are in modulus sufficiently small there 
belongs a unique period T = T(p, f)) and a unique hz = h2Cu, {J) such that 

(I)(t; p, 0) = u(t: f), ug, lig ....L hz('u, f)), ,u, TCLl, f))) (5) 

a T 
1;; a D-periodic solution with period TeLl, f)) and coefficient a (u, !?)= ~f)0) 

j T(p, 
of the equation (2). The [ullctions T(,U,t1), h2(,u,f)) are analytic in a neighbour
hood of {.u =f) = O}, the solution (5) is analytic in a neighbourhood of 

{p {j = o} for all t, T(O, 0) = 0, hz(O, 0) = ° and (I)(t; 0, 0) llO(t). 
By using PoincarC's method we shall give expressions up to first approxi

mations for T(p, B), a eu, ;9) and (I)(t; p, B). We haye already mentioned that 
the system (4,) has the periodic solution 

for which Pl(O) = col (1, 0). A_ st~cond linearly independent solution of (4) is 
denoted by P2(t) = col (P12(t), P22(t)) with Pz(O) col (0, 1). The Wronskian 
W(t) (for which W(O) = 1) according to Liouville-fornmla is given by 

Theorem 2. Under the conditions of theorem 1, the period T(ft, f)), the coeffi
cient a (p, f)) and the D-periodic solution (o(t; p, f)) of the perturbed equation (2) 
are o-iven bv '" - -' 

r(ft, ;9) = To -+- pr1(f)) + o(p), 

f)) aoTl(f)) ) 
a(p, = ao p + o(p 

To 
and 

(I)(t; p, B) = 1l0(t - fJ) 

1-0 I-i) 

+ P12(t fJ) f ~i:; lio(q)dq-uo(t--f)) f ~i:; Pdq)dq] + o(p) , 
o 0 
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where 

The proof is analogous to that of theorem 2 of [3] and will therefore be 

omitted here. 
A stability condition is given also for the D-periodic solution (O(t: ,Lt, &). 

Theorem 3. Under the conditions of theorem 1 if 

T, 

S gti(uo(t), ilO(t))dt > O. 
o 

then there exist Xl > 0, X2 > 0 such that the D-periodic solution O1(t; ,u,e) 
of (2) with period T(fl, ti) is asymptotically stable for all (p, fj) satisfying the 
conditions 

I Et I < x~ 
and 

,(lQ~(O, 0) < O. 
Here 

where y; is the partial derivative of y with respect to t. 

The proof, which we omit here, is analogous to that of theorem 3 of [3]. 
In the applications of theorem 2 and 3 we need to find the first compo

nent P12(t) of the solution P2(t) of (4). Generally the determination of P12(t) is 
difficult, but if uo(t) 7'- 0 for all t, using Liouville formula the function PIZ(t) 
is given by 

s 
t, exp S g~ (UO(Sl)' UO(SI)) dS I 

PI2(t) = uguo(t) j 0 (U
O
(S))2 ds. 

o 

In the case a o 7'- 0 we can show that l~O(t) . ~ 0 for all t. 

Theorem 4. If ao > 0 (a o < 0) then uo(t) > 0 (uo(t) < 0) for all t. 
Proof. In the (Xl' X2) - plane the solution p(t) = col (uo(t), uo(t)) of system 
x = f(x) defines a trajectory K. First we show that if the trajectory reaches 
the Xl axis at a point then it is crossing at this point from the upper (lower) 
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half plane into the lower (upper) one. Suppose that to is a finite value of t 
such that uo(to) = O. Since the trajectory K can not reach a critical point in 
a finite time, we have g(uo(to), 0) -;L 0 and hence K must cross the Xl axis. 
Obviously for X 2 > 0 (X2 < 0) the function uo(t) is increasing (decreasing). 

In the case a o > 0 it is easy to see that max ito(t) = UO(t1) > 0, 0 < 
t 1 TO']X ow let us consider the behaviour of K in the interval tl < t < 
(1 + To' If the theorem is incorrect, then K is crossing the Xl axis at some 

time (2' ti < t2 < t1 TO' Since 

and 

the trajectory K must cross itself and we obtained a contradiction. 
The case ao < 0 can be discussed analogously. 
The theorem may he considered as extension of F. Tricomi's results (5] 

(p. 290) to the general equation 

it g(u, it) = o. 

2. We shall consider now the perturbed equation 

it + g(u, u, u) = flY (_t_, u, It, u, p, ri, 
r ) 

(6) 

which satisfies hypotheses analogous to i), ii) and iii) of section 1. We shall 
discuss also the existence and the stability of a D-periodic solution of (6). 
The equation (6) is equivalent to the system 

x =f(x) + fIT (+, X, fl, c), (7) 

·where 

and 

Obviously, the unperturbed system of (7), 

x = f(x) (8) 
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has a D-periodic solution p(t) = col (uo(t), uo(t), uo(t)). Since (8) is autono
mous, the first variational system (If (8) corresponding to the solution p(t), i.e. 

y = f~(p(t))y (9) 

has a periodic solution Pl(t) = p(t) = col (Pu(t), P21(t), P31(t)). Without loss of 
generality we may assume that 

Pl(O) = col (1, 0, 0) 

and the first component of Pl(t) is a solut10n of the unperturbed equation of (6). 
(This can be achieved by a simple linear COOl diEate transformation.) Let us 
denote by 

P2(t) = col (P12(tj, P22(t), P32(t)), 

P3(t) = col(P13(t), P23(t), pdt)) 

the two solutions of (9), for which 

P2(0) = col (0, 1, 0), 

P3(0) = col (0, 0, 1). 

Using Liouyille's formula the Wronskian W(t) is given by 

W(t) 

Since Pl(t) is a non-trivial periodic solution of (9), f?l = 1 is a charactcristic 
multiplier of (9). The two other characteristic multipliers are denoted by 

f?z, f?3' 
As in section 1, for I to;, I! XO - pO 11, ! ,U 1 and 1 r - TO I sufficiently 

small the solution x(t; to' xo, ,u, r) of (7) can be written in the form 

Here 
x = x(t; tl, po + h, ,u, r). 

x(8; 0, po h, ,u, T) = po + h, 

pO = p(O) = col (ug, ug, ug) = col (uo(O), ilO(O), iio(O)), 

h = col (0, h2' h3) . 

Theorem 5. If the conditions 

are satisfied, then to all p, tt 'which are in modulus sufficiently small there 
belongs a unique period r = rea, &) and a unique vector heLl, ft) = col 
(0, h2(,u,ft), h3Cu, tt)) such that 
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w(t; ,U, lJ) = xl(t; lJ, pO + h(,ll, (}), ,u, i(p, B)) (10) 

a i 
is a D-periodic solution with pt'l'iod T(U, D) and coefficient a (,u,ti)= _(0 °C) 

i ,u, d 

of the equation (6). The functions TCU, D), h~Cu, ti) and h3Cu, fJ) are analytic 
in a neighbourhood of {fl = DO}, the solution (10) is analytic in a neigh
hourhood of {,Ll = D = O} for all t; T(O, 0) = TO' h2(0, 0) = h3(0, 0) = 0, 
(I)(t; 0, 0) = uo(t). 
Theorem 6. Under the conditions of theorem 5, the period TCu,fJ), the coeffi
cient a Cu, D) and the D-periodic solution co(t; ,u,ti) of the perturbed equation 
(6) arc giyen by 

o(,u) , 

and 

t-{} 

J
' y*(q) } 

ti) W(q) P3i(q) dq o eLl ) , 

where 

_fro y*(q)_ P31(q)dq, y*(q) = y l' q :ti , p(q), 0, i o), 
W(q) io 

o 

P;j(q) is the cofactor ofp;j(q) in W(q), D(io) = W(io) + 1 - (P22(i o) pdTo)), 
6;j is Kronecker-symbol. 
Theorem 7. Under the conditions of theorem 5 if, in addition, 

• (;121 < 1, ! (;I3i < 1, 

then there exist Xl >- 0, X 2 > 0 for which the D-periodic solution w(t;,u, {j) 
of (6) is asymptotically stable for all Cu, fJ) sa'~isfying the conditions 

! fJ I < x:? 
and 

,u(;l~(O, 0) < 0. 



94 T. F. GIAP 

Here 

o 
_~ _~ 21 (i 0)-=, __ .P12 ( T 0) 
, D( i 0) 

where /'1 is the partial derivative of I' with respect to t. 
The proofs of theorems 5, G, 7 are based on elementary considerations 

as in section 1 and no additional difficulties arise but longer manipulations are 
needed in carrying through the calculus. For a more detailed consideration of the 
ahove theorems we may refer to [6]. 

The author wishes to thank Prof. M. Farkas for his help in the prepara
tion of this paper. 

Summary 

:yr. FARKAS has discussed the existeuce and stability of a D-periodic solution of perturb
ed autonomous systems under periodic and non-autonomous perturbation. In this paper 
Farkas' method has been applied to perturbed second order and third order equations. Poin
care's method has been used for the determination of the first approximation of the D-periodic 
solution and an effective form has been given to the stability criterion. 
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