ON PERTURBATIONS OF SECOND ORDER AND THIRD
ORDER EQUATIONS

By
Tran Vanx Giar

Department of Mathematies, Technical University Budapest
(Received March 7, 1974)
Presented by Prof. M, Farkas

M. Farkas [1, 2] considered the perturbed system

x = flx)+pr ‘t_ s %y My T} s (1)
T

where x, f and r are n-dimensional vectors, t, u and 7 are real scalars. He obtain-
ed general results pertaining to the existence and stability of the D-periodic
solution of (1). Then I. Farxas, M. Fargas [3] and H. M. EL Owarmy [4]
have considered perturbed van der Pol’s and Liénard’s equation in detail and
obtained the actual determination of D-periodic solution and an effective
form of the stability criterion.

In the present paper the above results are extended to general perturbed
second order (section 1) and third order equations (section 2).

1. Consider the scalar differential equation

{
i+ g(u,u) = uy —i— s Uy %, U f), (2)

where p is a small parameter. We shall suppose that (2) satisfies the following
conditions:
i) The functions g and y are analytic in the region

I QxI <1,

where
I‘,:{t:—m<t—1,—oo},
Q an open and connected region in the (u, u) — plane,
I,= {u:]jp|<<a} x >0,

IL={r:|lt— 7| <P} 0B <rq

ii) The function y is periodic in t with period 7€ I, g and y are also
periodic in u with period at = a47y; where a, is a constant. In the case ay % 0,

1*
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Q is supposed to have the following property: if (u, u) € Q, then (u - ayt, u) €
E -Qv 0 < t < +O<“'

iii) The unperturbed equation
i +g(u,u) =20

has a non-constant D-periodic solution uy(f) with period 7, >0 and with
coefficient a,.
We replace the equation (2) by the equivalent system
& = flx) + ur 7 (3)

(it
—— Xy My T
T

where

Obviously, for p = 0 the first variational system of (3) corresponding to the
solution p(f) = col (uy(t), uy(t)),

y = f{p@)y (4)
has a non-trivial periodic solution p(¢) and thus 1 is a characteristic multiplier
of (4). Using Liouville’s formula the other characteristic multiplier is given by

gy == €xXp | — S (o) suo(t))di
9
We can assume without loss of generality that
B(0) = col (its(0), 0),  isg(0) = 0.

M. Farkas [1] has showed that for [ 1], || x° — p®i], |#| and | T — 7, | suf-

i

ficiently small the solution x(t; ty, % u, ) can be written in the form
x = x5 9, p° + h, u, 7).
Here
x(4; ¥, p® + h, u, v) = p° + h,
p® = p(0) = col (u, @) = col (i (0), its(0)):
h = col (0, hy).

As a consequence of theorem 1 of [1], we have the following statement:
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Theorem 1. If the condition

To

6? gu(ug(t), wo(t))dt == 0

is satisfied, then to all u. 9, which are in modulus sufficiently small there
belongs a unique period 7 = 7{u, #) and a unique h, = h,(u, ) such that

oty p, 9) = ults 9, ud, uy - hy(u, 9), u, o, 4)) (5)

o To
{u, ¢)
of the equation (2). The functions (u, #), hy(u, #) are analytic in a neighbour-
hood of {u = & = 0}, the solution (5) is analytic in a neighbourhood of
{p=10=10}for all ¢, 7(0, 0} = 0, h,(0,0) = 0 and w(t; 0, 0) = u(s).

By using Poincaré’s method we shall give expressions up to first approxi-
mations for z(u, #), @ (u, §) and w(t; u, 4). We have already mentioned that
the system (4) has the periodic solution

is a D-periodic solution with period (u, #) and coefficient a (u, ¥)=

p()

ltO

pa(t) = col (py1(0); post)) =

for which p;(0) = col (1, 0). A sccond linearly independent solution of (4) is
denoted by p,(t) = col (p;4(t), pas(t)) with p,{(0) == col (0, 1). The Wronskian
W(t) (for which W(0) = 1) according to Liouville-formula is given by

W(t) = exp |~ fg;(uo(s), i,(s)) ds

0

Theorem 2. Under the conditions of theorem 1, the period 7(u, #), the coeffi-
cient a (i, 9) and the D-periodic solution w(t; u, #) of the perturbed equation (2)
are given by

(i, &) = 145 + pry(8) + o(u),

alit, 8) = ap— 220 o)
Ty
and
1 p»r—ﬁ)W 70) ,@
oty u, 9) = t— 1 0
o0 1 9) = wle — ) = | PAED f i (9)dg +

.plg(t~—z9)f {V((q) Q)dg—is ﬁ)f e dq] o(u)
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where
_ 1 (7w _ pulnd
() = dgoj o [P ey @) da.
)

ug(g), holg)- 0. ) .

The proof is analogous to that of theorem 2 of [3] and will therefore be
omitted here.

A stability condition is given also for the D-periodic solution o(t: u, 8).
Theorem 3. Under the conditions of theorem 1 if

Ty

j ug(t), uo(t)det >0,

then there exist oy >0, 2, >0 such that the D-periodic solution w(t; u, 9)
of (2) with period 7(u, #) is asymptotically stable for all (u, §) satisfying the
conditions

! ALL ] < 'xl ‘ ?9 1 2
and
10,(0,0) <0
Here
. '[t wy(8), tqf1), 0 TJ
LS bl 2 2 Ve
0,(0,0) = 1 Tq ’ ’ ’ { (1) — Pm(fo)uo(t)]dt
W : Z0) Pz ug(1= (7))

where y} is the partial derivative of y with respect to 1.
The proof, which we omit here, is analogous to that of theorem 3 of [3].
In the applications of theorem 2 and 3 we need to find the first compo-
nent p,,(t) of the solution p,(t) of (4). Generally the determination of p,,(t) is
difficult, but if uy(t) == 0 for all ¢, using Liouville formula the function p;,(t)
is given by

exp (gl (uglse)s to(s) ds;
P1a(t) = ugu(t) - CED)E ds .

In the case @, == 0 we can show that uy(t) = 0 for all ¢

Theorem 4. If ay > 0 (a, < 0) then uy(t) > 0 (uy(t) < 0) for all ¢.

Proof. In the (x;, x,) — plane the solution p(t) = col (uy(t), uy(t)) of system
x = f(x) defines a trajectory K. First we show that if the trajectory reaches
the x, axis at a point then it is crossing at this point from the upper (lower)
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half plane into the lower (upper) one. Suppose that ¢, is a finite value of ¢
such that uy(ty) = 0. Since the trajectory K can not reach a critical point in
a finite time, we have g(uy(ty), 0) == 0 and hence K must cross the x, axis.
Obviously for x, >0 (x, < 0) the function u(t) is increasing (decreasing).

In the case a, >0 it is easy to see that max uy(t) = ug(t;) >0, 0 <
t1 < 7o Now let us consider the behaviour of K in the interval t; <t <
t; + 7o If the theorem is incorrect, then K is crossing the x; axis at some
time iy, i; <ty < t; - T4 Since

(ug(ty + )y uolty + 7¢)) = (ug(ty) + @gTqs  ug(ty))

g(t) = 1g(ts),

the trajectory K must cross itself and we obtained a contradiction.

The case a, < 0 can be discussed analogously.

The theorem may be considered as extension of F. Tricomi’s results [5]
{p. 290) to the general equation

i -+ gu, u) = 0.
2. We shall consider now the perturbed equation
. t ) \ .
u+ glu, i, i) = py [—— 2 Uy Wy Ty [y T, (6)
T ]
which satisfies hypotheses analogous to i), ii) and iii) of section 1. We shall

discuss also the existence and the stability of a D-periodic solution of (6).
The equation (6) is equivalent to the system

:i::f(x)-—}—yr[——t—,x,y,z . (7)
T
where
Xy Xy
x =%, flx) = X3
X3 —8(xy, %, %)
and
0
( . 0
rl—, % u 1=

4
b4 (_o Hyp Xgy Xz by T
T

Obviously, the unperturbed system of (7),

x = flx) (8)
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has a D-periodic solution p(t) = col (uy(t), uy(t), iig(t)). Since (8) is autono-
mous, the first variational system of (8) corresponding to the solution p(t), i.e.

y = flp®)y )
has a periodic solution py(t) = p(t) = col {p11(t), pay(t), psi(t)). Without loss of

generality we may assume that
p1(0) = col (1,0, 0)

and the first component of p,(¢) is a solution of the unperturbed equation of (6).
(This can be achieved by a simple linear coordicate transformation.) Let us
denote by

Ppa(t) = col (py5(t); pasle)s Pae(t))s
Ps(t) = col(py5(1): pas(t)s pas(t))
the two solutions of (9), for which
P»(0) = eol (0, 1, 0),
p3(0) = col (0,0, 1).
Using Liouville’s formula the Wronskian W{(t) is given by

pul) pi(t) pislt) 1
W(t) = det ,: Par(t) paali) st(t):] = €xp S — gi(ug(s), uq(s)s iig(s))ds.
Psi(t) Pys(t)  pas(t) ’
Since p,(t) is a non-trivial periodic solution of (9), ¢, = 1 is a characteristic
multiplier of (9). The two other characteristic multipliers are denoted by
Q9. O3
As in section 1, for [t,]. || = — p°Il, u]| and | v — 74| sufficiently
small the solution x(f; iy, x% u, 7) of (7) can be written in the form
x o= x{l; z‘),po -+ h, u, 7).
Here
(80, p* + h,u, 7)) = p® + h,

p° = p(0) = col (uf, ul, i) = col (uy(0), w4(0). ii(0)),
h = col (0, hy, hs) .
Theorem 5. If the conditions
0, =1, 0 =1

are satisfied, then to all x, & which are in modulus sufficiently small there
belongs a unique period v = t(u,¥#) and a unique vector A(u, #) = col
(0, ho(u, B), hy(ut, 9)) such that
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oty 4, 9) = x(t; 9, p° + h(u, 9), u, w(u, ) (10)
is a D-periodic solution with period (u, #) and coefficient a (u, 9)= —%%21%5
oy &

of the equation (6). The functions t(u, 8), ho(u, ) and hy(u, #) are analytic
in a neighbourhood of {u = ¥ = 0}, the solution (10) is analytic in a neigh-
bourhood of {u= 9 =0} for all & (0,0) = 14 hy(0,0) = hy(0,0) = 0,
o(t; 0, 0) = uyr).
Theorem 6. Under the conditions of theorem 5, the period z{u, ¢), the coeffi-
cient a (u, #) and the D-periodic solution w(t; u, #) of the perturbed equation
{6) are given by

oy, 1) = 79 + pty (F) + o) »

(g 8) = ap — 0200 o

Ty

and

oft; u, ) = uylt — 9) +

.
*[ (()) zplx 9)pi(te) — ;] j p3,q>q~—~
+, p1,< ﬁ)J '(q) SXCL }-Lo<,u>,

where
0(#) = — — > [Wropulro) ~f:~p,~1<ro>]j"olm Py () dg —

D(z,) = J W9

Ty

R y*(q) P % g+ ]
— ( )d s} ( =¥ B )7 01 To| -
UJ W) s1(9)dg. v*(q) ( plq 0

P;4(q) is the cofactor of p;;(q) in W(g), D(7o) = W(zy) +1 — (Pzz(’[o) + Paa(70))s
0;; is Kronecker-symbol.
Theorem 7. Under the conditions of theorem 5 if, in addition,

Log ] <L, Log| <1,

then there exist «; 2> 0, %, >0 for which the D-periodic solution w(t; u, #)
of (6) is asymptotically stable for all (u, ¥) satisfying the conditions

D < %, (0] <oy
and

10,0, 0) < 0.
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Here

“ ot [, (), 0, 7
04(0,0) = —5} [TO ;(; T ) {Pm(t) +

‘ D(z,) e D(z,)

Py (7) + P12 (1) Folt) +- Pyi(79) + pis(7o) ng(t)} dt,

where 3 is the partial derivative of y with respect to 1.

The proofs of theorems 3, 6,7 are based on elementary considerations
as in section 1 and no additional difficulties arise but longer manipulations are
needed in carrying through the calculus. For a more detailed consideration of the
above theorems we may refer to [6].

The author wishes to thank Prof. M. Farkas for his help in the prepara-
tion of this paper.

Summary

M. FArgas has discussed the existence and stability of a D-periodic solution of perturb-
ed autonomous systems under periodic and non-autonomous perturbation. In this paper
Farkas’ method has been applied to perturbed second order and third order equations. Poin-
caré’s method has been used for the determination of the first approximation of the D-periodic
solution and an effective form has been given to the stability criterion.
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