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1. Castigliano's variational principle 

The basic relationships of classic elasticity theorem can be ddined not 
onh' as simultaneous differeIrl ial equations hut as a yariational probl(>m as 

wen: [1], [2]. 
The following ealeulatioI;~ apply to homogeneous isotropic linearly da~tic 

bodies exposed to small strain. Volumetric force system is omitted. The tested 
hody takes up a spatial yo:ume V, and has a surface S. Displacemfnt Y('ctor 1 
and surface load p an giv.::r -;'0 sluface sections St and Sp' respectiYely: 
S = St Sp; ii is the normal unit Yector to surfacf, S pointing outwards. 
The inner force systcm of space V is defined by symmetric stress tt'mor F. 

According to Castigliano's yaTiational principle for 

bK (F) = 0 (I-a) 

F II =p OIl surface Sp' (I-b) 

F· \- 0 In spact' ·V, (I-c) 
and 

(bF) - 0 sUTface Sp. (I-d) 'n on 

( bF) \ . 0 In z.paec V, (l-f) 

the solution of the above problem is tensor F. 
Functional K(F) is: 

(2) 

Castigliano's theorem includes the compatibility cquation Hnd the geom~'tric 
houndary conditions. 

2. Plane strain 

Suppose that in the Cartesian system of co-ordinates [x,},;:;] fitted to 
the examined body, in each point of the body the stress tensor F is 
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y 

----------------~~~~ 
x i 

Fip:.l 

(3) 

The specific elongation in direction;; ;3 Ez = o. 
The intersection of surface St and the co-ordinate plane [x, y] is curve 

gt(x) (see Fig. I). The normal vector of surface St in plane [x, y] is: 

Displacement __ ector: 

-n= 
I --

l
fI -L a/~ (-- g: i + j ), 

I c:,t 

I dgt 
gt=-d 

x 

I (x, y) = u(x, y) i v(x,y)I. 

Conditions (I-c, e) are satisfied hy using Airy's stress function. Writing the 
stress function in the form: 

11 

A(.~, y) = .2'1; (x) Y,{y) (4) 
,=.1 

the prohlem will he solved hy Kantoro ,·ieh 's method [3]. The function system 
YJy) is chosen first, taking conditions (I-h, d) into consideration. 

Function K can he ohtained from 

I . 
az = -- (ax -+- ay), 

m 

E-')G-~ 
-~ m-I' 



as follows: 

Stresses are: 
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- J[axnxu + aynyL' 

s, 

~f">7 0...., == /. i .l:.; - -i 
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Txv = - "YJi Y; . .. ...... 
i 

Supposing that the iilze of the body in dire.::tion "z" is constant and stresses 
are independent of co-ordinate z, ,he ccmplementary energy is: 

K- <j, 1 ,"' '" J' (-I' f 'VII Y" , f"f" Y "V i> = 2E "'f T Jk ) .1./; j -T !; j ".1. } + 
A, 

?, m -I"j,' "V' >7' ? 1 -I' f" Y" Y) dA - -m--I-J'; j .1. k .1. j - - m-I Jk j k j 0 -

- ~ f [- if- Y k (u .- g; v) + fZ Y" v - f,( YZ ug~] dx. 
k , 

g, 

Introducing notations: 

B '1 m J~ "\."' 1"' d 
kj = ::. m-I .i" 'j :Y; 

(5) 

C ( V"II >711 d 
"j = J .1. /; .1. j Y; 

J k = - (Y;; ug;) iy=gdx): 

1\ilk = [Yk(u - g; v)]y=gdx); 

(I-a) will be equal to the following simultaneous differential equations: 

(Bkjfj)' ...L C"jfj ~LkJjl = E(Jk 

(k = 1, 2, ... n) . 
(6) 

Boundary conditions to functions Jj(x) are obtained from (l-b, d). 
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3. Cemented joint 

Let us examine the tensions in adhesiye layers of lap joints using the equa­
tions ahoye. The adhesiye layer of thickncss '2lz, and l!'ngth '2l shown in Fig. '2 
connects two flat sheets. 

Suppose the glue mat!'rial to be homogeneous, isotropic and elastic, 
the sheets to be perfectly rigid. The joint is loaded by two forces P of COlllIllon 
influence line [4]. They impose the sheets u relatiyc moycmcnt llO' 

Fig. 2. Cemented Jap joint 

Except in the c!n-ironl11"nt of the sides of the udhesiy(' layer at efl-ordi­
nate ::; = bi2, correlations (3\ .::un be considered as fairly approximate in con­
formity to [5]. 

Boundary conditions ,elating to the glu!' layer are: 
geometric boundary conditions: 

y=lz 
\. =-h 

II = II 0 ( constant) 

1l=0 
v 0 
v=O 

ch-numic hound ary conditions: 
" . 

x - ~ 1 O. 

Let us choose the function sYstcm such that 

y. = vi 
I • ( i 1,3,5, ... odds). 

To find the first approximatiye solution of the problem, let i 
degree Eq. (6) with determined factors (5) will be as follows: 

h2 flY :"Jjff 0; c~ = 6 
11l 

c- 1 
1n- l 

On the basis of boundary conditions (7 -b) 

x = J..J 11 = 0 11 o. 

(7 -a) 

(7-b) 

1. The fourth-
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The f'olution is 

Stnsses are 

a 1y = 
sh (c ~l 

c2 h i Ry - --:----;--,---
h

2 
ch (c~l 

h J 

Constant B can be determined from 

/ 

fT1xvdx = ~, 
- b 

-/ 

hence: 

For ?>. 0, a good approximation is obtained from 
h 

where 

_ - Y -c$ av - - T c-e , 
. h 

T= 
P 

2bZ 
t_~ 
,,- h 

Using general relationships [6] to the preyious problem, we get: 

i xy = T. 
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(8) 

(9) 

(10) 

The calculation shown aboye gave an important stress concentration. It means 
that failure in shear of joints is due to tensile stress ay: 

ay;ax = V 6 m 
o m-I 

3 Pcriodica Polytechnica )1. 18/2 - 3 
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Fig. 3. Stress distribution in the environment of the glue edge 

,y 

Fig. 4. Flat surface with elastic coating 

If the glue is of other than plane, the stress ay will be of a different value. 
From the calculation it is obvious that the shape of adhesive edge (at x = .ll) 
may be decisive for the strength of joints [6]. 

4. Surface coatings 

In Fig. 4 a plane body is seen, infinite in directions x and z, coated with 
a layer of thickness It (enamel, synthetic resin, etc.). 

Suppose the layer material to be homogeneous, isotropic and elastic. 
Strains in the body are supposed not to be influenced by the layer stresses, 
the adherence bet'ween layer and body 'will not fail. These strains meet assump­
tions (3), 8 z = O. 

Boundary conditions for the layer are geometric boundary conditions: 

dynamic boundary conditions: 

8u 
- = 8xO (X) 
8x 

-rxy = 0 

-rxy = O. 

(lloa) 

(llob) 

(ll-c) 
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Accordingly let us choose the function system Yi(y) as follows 

(i = 1,2, ... ). 

Determine the first approximation of the problem, i = I ! 
The fourth-degree Eq. (6) will be 

')0 
/14 fF - ~ K]z2 n + 20f1 = 10 E cxo (x) 

3 

K = (2m + I)/(m - I). 

Accorcling to (ll-c), the boundary conditions are: 

and let limits (lim f1) and (lim f2) be finite. 
x-IX> x-co 

If cxo{x) is constant then: 

x 
where ~ is '! new independent variable, 

Iz 

Cl = V~ (K --'- VK2 1.8) , 
3 ' 

Co = V~ (K - VK2 + 1.8) . 
- . 3 

The stresses are 

It is seen from the equahons that for a high ~ value 

av = 0, 

and at ; = 0 

aymax = Vs E Cxo . 

3* 

c2 e- r ],!,: 
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Fig. 5. Stress distribution in the environment of the edge of an elastic coating 

Stress concentration III a coated hody 

O"ymax 

axc:tj 

Notice that far away from the sides of a layer the stresses tend to reduce. 
If the coat gets demaged - results in a free edge changing the stress state 

he developing O"ymax may tear off the coat from the surface. 

Summary 

Stress states in thin, elastic layers such as cemented joints and surface coatings are 
determined. The calculations are based on Castigliano's variational theory of classic elasticity 
theorem, thus the approximative solutions exactly satisfy the equilibrium equations. 

The results show significant stress concentrations to develop, in agreement with 
experimental results. 

F 

P 
f 
P=F·F 

[ 11 
ax, ay, az, Txy 

1'2' ex 
( )' 
m 

G 

List of simhols 

Stress tensor 
Normal unit vector to the surface 
Surface force system 
Displacement vector 
Product of tensor 
First scalar invariant of tensor 

Stresses 
Specific strains 
Derivative of a single-variable function 
Poissons's ratio 
Shear modulus 



E 
p 

b, /, h 
h 
sh(x) 
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Young's modulus 
Shear force applied on a lap joint 
Characteristic dimensions of a lap joint 
Thickness of the coat 

0,5 (eX - e-X); ch(x) 0,5 (eX + e-X); th(x) = sh(x)/ch(x). 
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