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1. Castigliane’s variational principle

The basic relationships of classic elasticity theorem can be defined not
only as simultaneous differential equations but as a variational preblem as
well: {17, [2].

The following calculation:s apply to homogeneous isotropic linearly #lastic
bodies exposed to small strain. Volumetric force system is omitted. The tested
body takes up a spatial volume ¥, and has a surface S. Displacement vector 1
and surface load § are giver to surface sections §; and S,. respectively:
S=35,+ S, n is the normal unit vector te surface S pointing outwards.
The inner force system of space V' is defined by symmetric stress tensor ¥.

According to Castigliano’s variational principle for

oK (Fy =40 (1-a)
and
F-n=p on surface S, (1-b)
F-v=0 in space F, (1-c)
and
(0F) - n = () on surface S, (1-d)
(0F) - v = ¢ in zpace V, (1-e)
the solution of the above problem is tensor F.
Functional K& is:
K(F — L‘ ‘ P — — = (Fp| dv — j7oFomds. @
4G J | m -+ 1 ‘ y
1% S:

Castigliano’s theorem includes the compatibility equation and the geometric
boundary conditions.

2. Plane strain

Suppose that in the Cartesian system of co-ordinates [x, y, 3] fitted to
the examined body, in each point of the body the stress tensor I is



114 G. VOROS

y=gp(x)
y=gh(x)

-
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Fig. 1
Oy Ty O 80 \
F=|74y 0 0];: —==0. (3)
0 0 o, 0z
The specific elongation in direction z s & = 0.

The intersection of surface S, und the co-ordinate plane [x, y] is curve
g,(x) (see Fig. 1). The normal vector of surface S, in plane [x, y] is:

- 1

n = (—gi+j)

’
=t

_ 95
dx
Displacement vector:

iz, y) = ule, )1+ v(x,y)j .

Conditions (l-c, e) are satisfied by using Airy’s stress function. Writing the
stress function in the foerm:

A, y) = 3fi (x) Yily) ()

=1

the problem will be solved by Kantorovich’s method [3]. The function system
Y,(y) is chosen first, taking conditions (1-b, d) into consideration.
Function K can be obtained from

Oz = - (G,\‘ _” Uy) ]

3 |-

E =262

?
m—1
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as follows:

K¢ N 1 2 2 2 1 2m 2 dv
Oy Oy Tyy ) == Ox — Oy — — Oy Oy Txy -
m— 1 m— 1

—J [o,n,u + oyn,v - 7 (n,u 4+ n,v)]dS.

S
Stresses are:

oo, e O Y — ¢ ’
Gx:‘z‘fiyi’ G}'_‘Zfi Y:: rxy"‘_ZfiYi'
1 H I3
Supposing that the size of the body in direction “z” is constant and stresses
are independent of co-ordinate z, the complementary energy is:

e 1 ~ O A NS 7o ;o
Rify= 5= ;J (fkf}nY,-—f Y Y, 4
k 7 \
Ay

m I I Vard ;I 3 1
2 fl:f}}kyj—2
m — 1 m— 1

g*_

Sl YL, dA, —

- 2[ [~ /i Y — glv) = f Yoo — f, Yiug)]dx.
k .
&t

Introducing notations:

Dy =¥, Yidy: By =2 (Vi Yjdy:
’ m—1 .
. (5)
Ciy = f YiYidy:  Ly=— [ ¥} Ydy:
. m
Ny= (Y, v) hogin s Jip = — (Yug) j}'=g:(x)?
M, = [Yi(u — g v)] ly=gq9 3
(1-a) will be equal to the following simultaneous differential equations:
VD //11 ” //:C \1L PRI 7/ A W Vi
- wi i "f—?LI{jfj — (B )+ Cy f; Y wfi| = E(Jx + My 4+ Nj),
J = . =
(6)

Boundary conditions to functions fj(x) are obtained from (1-b, d).
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3. Cemented joint

Let usexamine the tensions in adhesive layers of lap joints using the equa-
tions above. The adhesive layer of thickness 2h, and length 2/ shown in Fig. 2
connects two flat sheets.

Suppose the glue material to be homogeneous, isotropic and elastic,
the sheets to be perfectly rigid. The joint is loaded by two forces P of common

influence line [4]. They impose the sheets a relative movement u,,.

Except in the environment of the sides of the adhesive laver at co-ordi-
nate z = b/2, correlations (3) can be considered as fairly approximate in con-
formity to [5].

Boundary conditions relating to the glue layer are:

geomeiric houndary conditions:

h u = u, (constant) v =0 (7-a)

—h u=20 v =0

l

ot

dynamic boundary conditions:

x = -+l Ty =0 .= 0. (7-b)

Let us choose the function system such that
Y, =v (i=1,3,5, ... odds).

To find the first approximative solution of the problem, let i = 1. The fourth-
degree Eq. (6) with determined factors (5) will be as follows:

. . , m
RFYV — 2 ff = 0; =6 e,
m— 1
On the basis of boundary conditions (7-b)

w==21 fi=0 fi=0.
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'The solution is

Stresses are

ch (c—:— _l
Tixy = B—C— 1 — Il .
h ch(c——’
h
Constant B can be determined from
1 P
J‘flxy dx = T N
~1
hence:
B ] P j .
2bf c— — th c—\l
h k)

For— > 0, a good approximation is obtained from
h =

g, = — Ted e ,
h
; (9)
Ty = T(1 -- e7%)
where
z_ P ; s x -1
251 h

Using general relationships [6] to the previous problem, we get:
o, =0y, =10 Ty =T, (10)

The calculation shown above gave an important stress concentration. It means
that failure in shear of joints is due to tensile stress g,:

Oymax __ 6 m
T m— 1

3 Periodica Polytechnica M. 18/2—3



118 G. VOROS

L L —— y ,
TxyIT —— 5 % Ay
P | P
3—T_ e = >
'\ ! ( ¢=0 025 05 |02505E=ce
~ I~ N A
™ ~o\ \
m=3 N \\
’ \ y=-h NV 1 2 3
' '\‘- ' v T ——
P | Kk T —
- 05- < X \\ \.\
. T~ : >§:xol -h \ \ N
o' 02 05 1 2 h

Fig. 3. Stress distribution in the environment of the glue edge

Fig. 4. Flat surface with elastic coating

If the glue is of other than plane, the stress o, will be of a different value.
From the calculation it is obvious that the shape of adhesive edge (at x = 1)
may be decisive for the strength of joints [6].

4. Surface coatings

In Fig. 4 a plane body is seen, infinite in directions x and z, coated with
a layer of thickness h (enamel, synthetic resin, etc.).

Suppose the layer material to be homogeneous, isotropic and elastic.
Strains in the body are supposed not to be influenced by the layer stresses,
the adherence between layer and body will not fail. These strains meet assump-
tions (3), &, == 0.

Boundary conditions for the layer are geometric boundary conditions:

Bu
y=h =) (11-a)
Ox
dynamic boundary conditions:
y=10 oy =0 Ty =0 (11-b)

x =10 o, =0 Ty = 0. (11-c)
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Accordingly let us choose the function system Y (y) as follows

Yiy) =y (=12, ...).
Determine the first approximation of the problem, i = 1!

The fourth-degree Eq. (6) will be

Y — % KR f] + 20f;, = 10 E g, (x)
K= (2m -+ 1)/(m — 1).
According to (11-¢), the boundary conditions are:
and let limits (lim f;) and (lim f,) be finite.

X oo Xoe oo

If e,4(x) is constant then:

1 E Ey < —cx5
Sfilx) =— o ey — e+ 1]
2 ¢ —cy
s x - . .
where & == —}— is 2 new independent variable,
1

¢, _V—(K + VK= +1.8),

10

€= || — (K — JK2+1.8) .
: 3
The stresses are
Ee
O = 0 Je e — ¢ L 17,
€y — €y
1 ¢, C .
o= Begy — 2% e, —c,e = ],
< 17— €2
! €1 C; . :
T = E ey — 2% [ee — gmes]
17 Co

It is seen from the equations that for a high & value
Ty = 0, oy, =0, Ove = B eyqs
and at £ =0
Oymax = V‘S Ee-

3%

119
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Fig. 5. Stress distribution in the environment of the edge of an elastic coating

Stress coneentration in a coated body

Oymax __ 1

ol

O

Notice that far away from the sides of a layer the stresses tend to reduce.
If the coat gets demaged — results in a free edge changing the stress state —
be developing o, may tear off the coat from the surface.

Summary

Stress states in thin, elastic layers such as cemented joints and surface coatings are
determined. The calculations are based on Castigliano’s variational theory of classic elasticity
theorem, thus the approximative solutions exactly satisfy the equilibrium egquations.

The results show significant stress concentrations to develop, in agreement with
experimental results,

List of simbols

¥ Stress tensor

7 Normal unit vector to the surface

P Surface force system

r Displacement vector

F?=F-F Product of tensor

I k First scalar invariant of tensor

T Oys Ozs Ty Stresses

&, &x Specific strains

«y Derivative of a single-variable function
m Poissons’s ratio

G Shear modulus
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Young's modulus
Shear force applied on a lap joint
Lh Characteristic dimensions of a lap joint
Thickness of the coat
x) = 0,5 (¥ — e"x).; ch(x) = 0.5 (¢° + e~¥):  th(x) = sh(x)/ch(x).

oyt

©
:":.‘
—
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