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Introduction

In numerous fields of industry, for example, in industrial chemistry,
increasing economy aspects and the production of various new products
require the large-scale application of high-pressure technology. In high-pres-
sure technology, cylindrical vessels, tubes closed by elements of different
shapes are generally used. Besides vessels of chemical industry, the reactor
bodies used in nuclear technique, the pneumatic and hydraulic evlinders
belong to this group. '

These units are generally loaded by uniformly distributed internal or
external pressure; strength calculation for this type of loading is generally
known. Also symmetric line loading occurs in practice. The additional stresses
due to point loads are superimposed upon the stresses produced by uniform
loads. Axisymmetric local stresses develop at the joints of closing devices
(Fig. 1), at axisymmetric supports, etc. In many cases the line loads are
negligible as compared to the internal pressure; but in certain cases, e.g. for
the self-sealing cover in Fig. 1/a, the additional load may be decisive. In spite
of this, in practice, experimental methods prevail in shaping vessel parts able
to bear additional stresses, since the strength analysis metheds found in liter-
ature are complicated and difficult to apply.

In the following, a simplified method for strength analysis is presented.

Application of the modified method

The modified method starts from common ones for stresses in thin-walled
tubes and cylindrical vessels, generalizing these to thick-walled tubes. The
advantage of this method applied for thick-walled tubes and cylindrical vessels
exactly is not to require from specialists any knowledge beyond the strength
calculation of thin-walled vessels. Its application, on the other hand, relies
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on the practical fact that the thickness of tube or vessel walls generally cor-
responds to a ratio of radii:

ko =2 > 0.4 (1)

Ty

this ratio being determined in the first line by the strength characteristics of
the structural material. Similarly, in case of lamizated walls used for higher
pressures, the ratio of radii corresponding to the thickness of the individual
layers is not lower than 0.4.
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Fig. 1. Axisymmetrical line load at the junction of closing elements

Further it can be stated that the consideration of additional stresses has
an importance for tubes and cylindrical shells with an internal diameter of

2ry > ~100 mm (2)

With regard to the defined application field of thick-walled tubes, the
modified method can be used with an accuracy acceptable for practice. The
correctness of the method has been justified by experiments on test pieces
and by comparisons to other methods known from literature [1].

Also the cylindrical shells of devices can be regarded as tubes, therefore
in the following the denomination “thick-walled tube” will be used as general-
1zation.

Axisymmetrical bending of thick-walled tubes

Joints in structural elements and other axisymmetrical line loads pro-
duce transversal forces or moments which bend the thick-walled tube. Rela-
tionships describing the axisymmetrical bending are the simplest to derive
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on the basis of the theory of elastically bedded beams used with thin shells.
This theory with certain modifications is suitable for a relatively simple deter-
mination of flexural stresses in thick-walled tubes.

Let us cut out from the thick-walled tube a beam belonging to the central

angle
1
)
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Fig. 2. Thick-walled tube exposed to bending load

(Fig. 2). The effect of elements adjacent te the beam is represented by the

“spring foree” ciw.

For writing the differential equation of bending, first the equilibrium
equation of forces and moments acting upon the elementary cube cut out

from the beam will be established.
The equilibrium equation of forces according to Fig. 2 is

p(x)dx — cwdx + Q, — Qx A ii%dx) =0
x

After reduction:

dQ,

—2 = p(x) — cw.
. P )_

The equilibrium equation of moments, according to Fig. 2:

M, — M, + dM, dx) — Q. dx =10

(6)
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After reduction:
_dM,

Qu=—-

A further relationship is needed which may be the functional relation-
ship between displacement and moment. In case of a heam

“d~w el M (8)

da? B,

Since in our case M, can be understood as edge moment — M, along
the generatrix, B, has to be substituted by the flexural rigidity B of the cut-
out beam, expression (8) can be bhrought to the form:

M, = Buwl 9)
where
3
B = ky _Bs (10)
12(1 — u®)

The factor kg in expression (10) is the ratio of the moments of inertia
of the bent thin-walled to thick-walled tube, taken for the gravity center
axis, and of the cross-sectional factors:

hp= = (11)

For the given geometry the approximation sin Ag »= d¢ can be used

_J([ = —1— A2 —L < 10°

7 Ty

3 i

and kg can be calculated from the relationship:

_(E+k0—3~3+k3+0.5k3

k:
? 1 — ko — K + Kk

(12)

The two equilibrium equations above and the deformation relationship
are sufficient for determining the radial displacement w, transverse force Q,
and the M, sought for. On the basis of relationships (7) and (9),
dQ, , dw

= B 13
dx dxt (13)

In this way, Eq. (5) can be brought to the following form:

da0s
d lj + cw = p(x) (14)
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In case of axisymmetrical line loads:
p(x) =0 (15)

Thus, bending of the thick-walled tube is characterized by the homogeneous,
linear differential equation of fourth order:

d*w

da?

+ cw = 0, (16)

Previous to the solution of the differential equation, let us determine
the spring constant c.

A cross-section of the tube will be displaced in radial direction by a
value 2. The displacement produces peripheral stresses in the tube of the
order:

w -
o, = Ee, = E— (17)
r
The resultant of stresses vayring along the thickness is given by the

relationship:

r ry k,

Ngn:jEl"—dr:Ewlnszwln-l—. (18)

In modelling the elastically bedded beam, the radial resultant N, of
the forces per unit length is substituted by the spring force cw. Accordingly,

N, dg = cw. (19)
Considering the expression (18) for N, substituting
1 1
dg = -— ~c —
Ts Ty

and reducing, the value of the spring constant will be

p= Loy T2 (20)
Ty L1
Write relationship (20) in the form:
¢c=kE"> (21)

3
3
where k, represents the relationship between spring constants now derived,
and valid for the thin-walled tube [2], expressed as:
1 1+k 1
% In — (22)
21—k, kg _
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Using relationships (20) and (21), the differential equation describing
the axisymmetrical bending is brought to the form:

d*w

dx4

© 4 o = 0, (23)

where the shell constant is
4

"o _ 2
ﬁzmvﬁﬁiil (24)

i st
The encountered factor ks is the quotient of the shell constants of the
thick-walled to thin-walled tube, to be calculated as:

4

k
b= | -2 25
5 V% (25)

In case of a relatively long cylinder (I > 3.1]r, s) the solution of Eq. (23)
is known to be transformable as [3, 4, 5]:

w = e~ (C cos Bz + C, sin Sx). (26)

The valuc of the integration constants C; and C, can be determined
with edge loads related to the given load cases, to vield the internal forces and
moments.

Stresses arising in the thick-walled tube

The internal forces and moments needed for determining the stresses
are scen in Fig. 3. All of them are expressed as functions of the radial displace-
ment 1.

Fig. 3. Line forces and line moments acting on the thick-walled tube
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The tangential line load:

N =FE -s— (27)
T
The shear line load:
d3w
== 2
0= B (28)
The axial moment per unit length:
M, — BE¥ (29)
dx?
The tangential moment per unit length:
d2w
M_= uB 30
@ 1 dx'l ( )

‘In the knowledge of the internal forces and moments per unit length
caused by a given external load, the stresses can be calculated by the fol-
lowing known relationships: ‘

Axial stress:

12M, 12B  d*w

O, = £ = A —— z, 31)
* kB - 88 kB - 5% dx? ( '
Tangential stress:
o= No  12M, . pw  12B dw (32)
¢ s kp-s® r kg s’ dx?

where z is the radial distance from the center line.
The edge load may be a transverse line load @, and a line moment M,
For analyzing stresses in the thick-walled tube it is expedient to intro-
duce dimensionless stress factors.
In case of edge load J:
the axial stress factor '

the tangential stress factor

In case of edge load M,:
the axial stress factor




148 K. PUSKAS

the tangential stress factor

- OoM
Gy = —22 -, 36
oM ﬂ‘-’_ﬂ/In ( )

Denotations applied for the attenuation functions are [6]:

H,(px) = ™% cos px

H,(Bx) = e~ sin fx (37a—d)
H,(fx) = e ™ (cos fx -+ sin fx)

H(fx) = e=" (cos px — sin fBx)

Further, let the following factors be introduced:
The ratio of an arbitrary radius to the external radius:

k= — (38)
Te
The ratio of the radius belonging to the center of gravity te the external
radius:
r 2 1 —K
by == = 0 (39)
r, 3 1 —K

Line load factor:

hy = — Ko (40)
In &,
Line moment factor:
6(1 + ko)

kM = (41)

b

3o ka V3 (L — 1) - (1 — k)

Factors k), and k,; have been determined for the case of edge loads Q,
and M,. Their introduction simplifies the relationship for stress factors and
stresses.

The stress factors calculated for the edge load Q,and M, (Fig. 2) are the
following:

At an arbitrary point along the radius of the thick-walled tube exposed
to edge load @, the values of stress factors are
in axial direction

0vq = ku(ks — k)H, (42)

in tangential direction

Goq = %\— H, + uéy. (43)

At an arbitrary point along the radius of the thick-walled tube exposed
to edge load M the values of the stress factors are:
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in axial direction

T = k_zw(ks - k)Hs (“M)

in tangential direction
= N ; -~ -
Ot == —]:“‘ Hy+ e (45)

To facilitate actual calculations, the diagrams in Figs 4 through 10 have
been plotted where all intervening factors are included versus k.
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Relationships (42) through (45), vield additional stresses produced by
line load and line moment, @, and M, resp., acting oun the edge.

The stress formulae, comparison to other methods, as well as the experi-
~mental results will be described in the second part of this paper.

Summary

A strength calculation method has been developed for thick-walled tubes and cylind-
rical vessels exposed to axisymmetrical line loads. The additional stresses in operating high-
pressure devices arising at the junction of closing elements in case of axisymmetrical seating
may be quite considerable. to be absclutely included in strength calculations.

The method for determining additional stresses is based on the principle of elastically
bedded beams valid for thin shells, and it is an extension of this method to thick-walled tubes
and cylindrical vessels. The modified theory has led to velatiouships for the determination of

stresses in tubes with a radius ratio of

-
bp=—1>04
L
most generally used in practice.
NOTATIONS
kp C g .
B cm® — flexural rigidity of unit shell element
cm?
Ci: Cyem integration constants
k 1 . . .
=P = spring constant of elastic bedding
cm em®

kp

3
cm-

E

Young's modulus
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J cm? moment of inertia
K cm?® cross-section factor
p — radius ratio, factors
M cmkp,%— moment, edge moment
N kp, Xp force, edge force
cm
kp .
p pressure
kp
Q kp,-— transverse force, edge force
cm
r cm radius
s cm wall thickness
w em radial displacement
z cm distance of extreme fibre from the gravity axis
x cm distance from the rim
B L shell factor
cm
& — specific strain
no— Poisson’s ratio
kp,, stress
cm?
Subseripts
b referring to the internal side
k referring to the external side, but as to radius, central radius
M in case of line moment
r radius-dependent
Q in case of line load
s in centre of gravitv
x axial
v referring to thin shells
@ tangential
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