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Introduction 

For the strength analysis of large-size thin-walled, conical bottomed 
contain f'rs and technological vessels of industrial chemistry no suitable stand
ard formulae are available. Such vessels lie outside the usual size range of 
pressure Yessels, thus the experimentally determined shape factors for conical 
bottoms without rounding off the corners are not valid for the formers. The 
outline drawing of a technological Yf'ssel with conical bottom, which can be 
said typical, is seen in Fig. 3. 

Thf' method presented in the following is based on the theory of thin 
shells and permits, on account of introducing the shape factor, a relatively 
simple design. 

1. Investigation of the junction of conical and cylindrical shells 

1.1 Edge influence coefficients 

In the general cSise, the elastic deformations of a long conical shell, 
loaded axisymmetrically by gas pressure and edge forces, can be described in 
the following dimensionless form: 

where 

w = wlR, 
Q=QIER, 

NI = MjER2, 

P = piE. 

(la-b) 

(2a d) 

In the following, the dash mark on top always denotes the dimensionless 
form of the given force, moment or deformation. 

The coefficients wQ' IV"r' etc. are called edge influence coefficients. 

6* 
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Since the vessels under investigation are made of thm-walled non-shallow 
conical shells, Geckeler's relatively simple approximation is applicable, giving, 
in the size range investigated, a practically perfect approximation. 

where 

It can bt' derived that 

WQ = 2ljJk3/2 V cos :h , 

WM = vQ = 2ljJ2.k2 , 

V!V! = 4<lp3k5
/2/V cos X , 

2 u 
10 = 'k, 

p 2 cos x 

vp "-' 0 , 

R 
k=b' 

lp = 3(1 - ,u2)1/1 

(3a-e) 

(4) 

1.2854 eu = 0.3) . (5) 

Formulae (3a to e) yield, in ca~e of x = 0, the edge influence coefficients 
of the cylindrical shell. 

The terms with subscript p include the deformatiGns due to membrane 
loads (charge pressure) and membrane forces. 

1.2. The system of deformation equations 

In the manner usual for hyperstatic structures, let the yessel be diyidecl 
into parts at the bottom junction, and indicate the total load acting upon 
the individual shell parts (Fig. 1). For the sake of simple treatment, let us 
separate the three shells at the common junction line, and separate the com
mon seam weld, otherwise regarded as of zero rigidity. 

Let us ''>Tite, according to the expressions (la, b). the deformations of 
the edges of the indiyidual shel15, taking the directions indicated in Fig. 1 
as positive. 

10; = VQ/22 - vM21k1z vJ p, 

103 = -wQi!3 + lCM3NI3 -lCp:lP 

w~ vQi23 VM32W'3 +- 0 . 

(6a-f) 

The equality of the deformations of joining shell edges, further the 
equilibrium of moments and forces perpendicular to the axis are expressed by 
the following equations: 
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lO l = W 3 , 

W~ = W2, 
I I 

Wl = W3' 

Ql + Q2 + Q3 
-~ lvIl + lvI2 + lVI3 = o. 

Also following relationships can he written: 

VI - V~ V3 = 0, 

PoR 
- -- 2 
VI = NXl = ~ = 0.5po' 

V 2 = NX2 cos et.: = -"-"-------''----''- = 0.5p T 0.5 _HE-y- L , 
2::rR· ER 

v - N - G1 + G2 0 - HI' (1 L) 
3 - x3 - 2::rR. ER = .U E- + , 

P = V2 tg Cl, 

:!-o) 
<w' 

M1 ,..... 
V1 M2 0 

~ 
V1 

M3 
Q1 Q2 Q3 P 

" V2 " 
V3 

V3 

M3 

0 

V3 

Fig. 1. Force system at the junction of shells 
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(7a-f) 

(8a) 

(8b) 

(8c) 

(9) 
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where 

P = Po + Hy, (10) 
G1 = R2n Hy, the weight of the charge of the cylindrical part, 
G2 the total weight of the conical part, and 

L = G2 • (11) 
G1 

The coefficients of Eqs (7a to f) can easily be calculated by means of for
mulae (6a to f) and (3a to e). The solution of the system of equations, that is, 
the determination of unknown forces Q and moments Nl, with given geometrical 
data and under given loading conditions, can be obtained by a simple computer 
program. 

1.3. Solutions in special cases 

In a general case, the loads arising at the junction are complicated 
algebraic functions of kl' k2' k3' Cl:, L, P, extremely cumbersome for establishing 
in a closed form. The investigation of several practically important cases 
leads, however, to simple and perspicuous results. These results will be pre
sented, disregarding the lengthy algebraic transformations, in the follo'wing: 

Vessel without skirt, loaded by gas pressure 

Be 63 = 0, Hy = 0 and 62 = 61• Then the moment 13 

- - 1 -
1111 = 1vL = Pc = --'=-:::=- cV , 

- 41p l!k;: 
the shear force is 

the secondary displacement is 

Llw = -0.51f'k;;/~ Pc, 
where 

c= 
1 + Vcos ~ 

- 1 P P = to- ~ _0_. 

2" E 

(12a) 

(12b) 

(12c) 

(12d) 

Formulae (12a to d) contain no term directly including pressure PO' 
since the stresses arising from unequal membrane deformations are neg
ligible in comparison to stresses due to a break in the meridian eUI·ye. 

The relationships (12a to d) can reasonably he applied to the case of 
two cylinders, too, which are loaded on their adjoining edges hyaline load P. 
Then Cl: = 0, c = 1. 
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It is remarkable that in case et = 30 G 
C = 0.964, that is, the shear force 

and moment arising in a conical-cylindrical shell under line load P hardly 
differ from the shear force and moment arising in a cylindrical shell under the 
same load. 

With the method presented, also the analysis of the junction of two 
conical shells is simple, but now this case is disregarded. 

Vessel with skirt support 

A practically very important case is that of 01 = 03 , that is, the wall 
thickness of the cylindrical container part and of the skirt are the same. 
Further, be et < 45°, kl = R/o l , Z = O2/0 1 , 

In case of an edge load P (case A of loading), by considering formula (9), 

Q2A = --'------'--''-----'- tg et V 2' 
4D 

1 + 0.5z2(3 - 1/ y; cos et) 
lvIlA = -------~~-

D 

and the secondary displacement 

D = 0,125 z4 ZZ + 1 . 

(13a-d) 

tg et V 2 , (13e) 

(14) 

In case of a container loaded by a gas pressure Po (ca3e B of loading), 
the moments, force and displacement arising from the difference of memllTane 
deformations are the following: 

2 -.u Z2 z2 + 4 y~ + 8/(z cos et) - 4_p 
.M 2B = ---'-- -

2 161p2 D kl 

2 .u z2 p 
Q'_'B = (0.5z2 + 2/ 11 z cos et)'" lfk.l NI2B - ----'-

., 2 41p kl ' 

- 1-
NIlB = 2 NI2B 

Q2B 

NI3B = NIlB - M 2B , 

c::JWB = -2ljJk1
3/2 cos et QZB + 21p2krM 2B' 

(ISa-e) 
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2. The method of design 

2.1. Calculation method of stresses 

The stresses arising in the extreme fibres of a shell are given by the 
following formulae: 

where for a conical, III case of x = 0 for a cylindrical shell 

Nx ~ 
G"'f = -- - El\' k X1¥. 8 - - x , 

Po HI' 
cos cc 

R 

8 

G",o = E Llw = EL1w, 
. R 

Po + HI' k 
cos cc 

I 61VIx -
G H = ,. -- = : 6 Mk2 E , 

x - 82 

(16a-b) 

, (lh-e) 

With the methods given in the previous chapters, the moment on the 
edges (NIx = lvI) and the secondary displacement (LlUi) can be determined 
and the stresses calculated. 

It lies outside the scope of this paper to discuss in detail, how the stresses 
at a greater distance from the edge of the shell can be calculated. In this con
nection we refer to the technical literature [3]. 

It must be noted, however, that the stresses rapidly decrease when 
moving away from the edge; therefore a change (d,~crease) in the wall thickness 
at a suitable distance from the junction has no influence on the value of the 
stress peak. 

In the numerical example l~o. 2, the stress development in a vessel of 
given dimensions is shown. 

2.2. Introduction of stress concentration factors 

.Let us relate the concentration factors of the stresses to the hoop mem
brane stress arising in the cylinder, that is, be 

(18) 

The greatest stress in the range investigated is always axial. 
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Be the cylinder and the cone denoted by subscripts 1 and 2, respectively. 
Quantities with no subscript refer to the tested shell. It can be shown that in 
a general case 

(19) 

where the first term is characteristic for the membrane stress, the second for 
the stress arising from the difference of membrane deformations, the third, 
finally, the stress originating from the break in the meridian curve. If 61 = 63, 

both g and I are merely functions of ()( and z 62/0 1• 

It is valid that 

1 

Vk 1 

(20a-b) 

where kl and k are the radius to thickness ratios of the cylinder and of the just 
tested shell, respectively. 

Vessel without skirt, loaded by gas pressure 

Take the above case, ·with 62 = 61, k2 k 1• With thc use of the rela-
tionships (20a), (l2a), (12d), (8a) it can be derived that 

. 6ki .1.1[1 

if =11 = 12 = k
1
j1k1 . 2V zlPo 

3 
tg ()(. 

41j1 
(21) 

Obviously gl = g2 = 0; further considering that Fpo = 0.5, the stress 
concentration in the conc: 

0.5 2 
0.583 ---'---c:-::===- tg X V kl . (22) 

cos x 

The stress concentration factors It calculated with the formula (21) are given 
in the second column of Table 1. The numerical values agree with the values 
found in literature [2]. 

Vessel with skirt support 

The calculation is entirely analogous with the previous case. As a result, 
it is obtained that 
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O.5z2(3 - 1/ V z cos IX) 3 
------'--D--'-'-----"- - tg IX , 

41jJ 

1 

1 3 
-to- IX 

D 4ljl 0 , 
(23a-c) 

-4 

The values of factors calculated in this way are given, for the case of 
61 = 15 2 = 153 , in Table 1. 

Table I 

(1.0 f'I' I, g, I, g, 

10 0,103 0,097 0,089 0,048 0,829 
20 0,209 0,198 0,073 0,100 0,853 
30 0,323 0,310 0,030 0,158 0,905 
45 0,533 0,523 -0,039 0,275 1,062 

It is obvious from the table that the stress state of the upper cylindrical 
shell is not considerably different whether there is, or there is no skirt (f; r-./ f1)' 
The factor gl' characterizing the difference of membrane deformations, is not 
high. 

The factor f2 of the conical shell is practically half of fl; thus, in this 
regard, the skirt releases the cone. At the same time, however, a considerable 
increase appears in the secondary stress arising from the difference of mem
brane deformations (g 2)' 

2.3. Introduction of the shape factor 

The conical and cylindrical parts of the junction are stati('.ally adequate, if 

pR 
UxR = -- F < U m • v, - b -- (24a) 

and 

s'= b>J~F, 
U m • v 

(24b) 

where F = F(IX, 62/15 1) is the stress concentration factor of the tested shell. 
These formulae are valid in the elastic range. In non-elastic range, the 

stress concentration factors are already not characteristic of the value of 
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stresses, but they are suitable for the limitation of the degree of plastic defor
mations. 

Be the necessary wall thickness 

s' = s~ . Y and 
pd 

s~ = --"'---
2am • v 

(25a-b) 

where the shape factor y expresses how many times thicker wall is needed 
in case of a structural shape different from a cylindrical membrane shell. 

In order to limit the degree of plastic deformations, be 

F 
y=--, 

2.6 
(26) 

that is, since 

aF aB am = --or--, 
1.5 2.6 

(27a-b) 

2.6 
a ror.lir.al = -- aF = l.73aF' or .. 1.5 

anominal = aB . (28a-b) 

The above consideration is not valid to cases where the structural material 
has no suitable plastic reserve, if certain causes may provoke embrittlement, 
alternating loading or stress corrosion may occur, discontinuities exist on the 
adjoining seam of the conical bottom, giving rise to fracture. 

Comparing the suggested design formula with the Hungarian, German, 
etc. standard shape factors, valid for conical bottoms, the application of 
standard shape factors can be stated not to be sufficiently safe in case of rela
tively thin shells occurring in container-building; i.e. they permit too large 
plastic deformations, likely to cause the failure of the device. Namely, the 
shape factors of standard formulae are based on experimental investigations 
on the usual size range of pressure -vessels. 

The shape factor can be determined, in knowledge of the stress concentra
tion factor, by iteration, or, in knowledge of s~, in the following way: 

Be ko = Rls~, kl = Rls~ . (29a-b) 

The shape factor of the cylindrical part, according to formulae (19) and 

(26), for Po = 0, P = H)', 

Considering also formula (25a), 
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Since for the cylindrical part gl <{ 2.6)'1' 

3 

I r - f?V I ]2 
V = Il1- 2 P . k . 
~ 1 I 2.6 0 

(30) 

The yalues calculated by formula (30) are shown in Fig. 2. 
The suggested method of strength analysis is as follows: assuming 

(\ = 62 = 63, the values of )'1 and s~ are determined from formulae (30) and 

3,0 

Y 

2.5 

2,0 

1,5 

1,0 

0,5 

--

::=: 

, 
o 

--~ -- --~ 
,,/ 

LV' 
l-!... ~ r"'" --~ 

./ 
~ 

100 200 

V V 

V 
-- --

V V 

-----~ 

V --L_ 

v ~ 

--- ----1--

--~ 
-----

20° 
30° 

20° 
10° 

300 400 500 
ko 

Fig. 2. Values of the shape factor for 6, = r5~ = 63 ; ko = R/so = H'{J/(am . v). amH/am = 2,6 
L = O. ","ote: Full line = computed shape factor, Dashed line = standard shape factor. 

valid for pressurized conical heads . 

(25a), then the stresses are calculated and checked by formulae (23), (19), (24), 
with the wall thickness obtained above, both for the cone and the cylinder. 
If necessary, after changing the wall thickness of the cylinder or of the cone, 
calculation and checking of the stresses are iterated. Modifications may be 
required e.g. by the joint efficiency factor different between the cylinder and 
the cone. Of course')"1 cannot he smaller than 1. 

Be the length of the thickened part surrounding the junction 2.0 VRs'. 
Let it be noted that the shape factor introduced in this way is analogous 

'with the shape factor, valid for conical reducers, to be found in the ASME 
Boiler and Pressure Vessel Code (Section VIII, Div. 2). 

Nllmerical example No. 1 

The data of the container with structural design according to Fig. 3 are 
the following: 



INFLUK"CE OF SKIRT SUPPORT ON THE STRESSES 

H= 2500 cm 
y = 1.5 . 10-3 kp/cm3 

L = 0.1 

From formulae (25b) and (29a): 

x = 20° 
d = 1000 cm 

Um • V = 1600 kp/cm~. 

2500 . 1.5 . 10 -3 . 1000 
s~ = ---------- = 1.172 cm , 

2 . 1600 

500 
ko = = 426.7 . 

1.172 

177 

Assuming z = 1, from Table 1, 11 = 0.198, gl = 0.073, from formula 
(8h) 2V2/p = 2 ·0.5(1 + L) = 1.1. 

According to formula (30) 

3 

Y = 1([ 0.198 
I 2.6 

. 1.1 . 426.7 = 1.445 . ]
') 

Thus, from formulae (25a) and (29b) 

5' = 1.17 . 1.445 = 1.69 cm, 

kl = 500 = 295.8 . 
1.69 

The stress concentration factor according to formula (19): 

Fl = 0.073 -'- 0.198 f295.8 . 1.1 = 3.82. 

The maximum nominal stress: 

U nom pkF = 3.75 . 295.8 . 3.82 = 4237 kp/cm2 • 

U 4237 
~ = -_-- = 1630 kp(cm2 ~ 1600 kp/cm~. 

2.6 :::.6 

Accordingly, the wall thickness of the cylinder is suitable. 
The wall thickness of the cone can similarlv be checked. 
If no plastic deformation is permitted, but it is allowed for the bending 

stress to exceed the membrane stress by 1.4, then 

. _1/[0.198 . IlJ2 4,')6'" - ') 18 \ - . -- • ~.I - M' • 

-' ! 1.4 

The German design specification AD-lVIerkblatt B2 -1969, further the 
Hungarian Standard lVISz 13825 1970 specify the shape factor of a vessel 
bottolll of dimensions as given above, as y = 2.0/2 = 1.0; they are evidently 
not valid in this size range. 
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, () [kp/cm'] 
2500 -'="'----- 0xRl =2393-

2000 

~---------;tr--------------

1000 

6~M; =750 

500 

x, 

-500 

q,iOm 
I 
I 

E 

'" '" 

100 cm 

6,M3 = -412 

-500-W~--=:::::==::::::::=== 

-; 000 +,.-::::-;c::T""---------

- (5 [kp/cm 'J , 
F i~. 3. Diagrams of stresses in the elastic range ex = 20°: Rli\ = 200; Hy = 3,75 kpjcm2 ; 

L = 0.1: (\ ~ (\~ = (\3 

Numerical example No. 2 

Fig. 3 shows the diagrams of characteris1 ic stresses anslllg in the vessel 
investigated in examplr :\"0. 1, in case of R r5 = 200, computed by a computer 
type ODRA-1204. 

Summary 

The stress concentration factor for the surrounding of the cone-cylinder-skirt junction 
is determined using the edge influence coefficients calculated with Geckeler's approximation. 
For practical calculation purposes, a shape factor is introduced, allowing a limited plastic 
deformation of the wall. In case of large-size thin-walled structures. the necessary wall thick
ness is considerably larger than the ~ne calculable according to· standards ap'pJied in the 
design of pressure vessels of con,-entional dimensions. 



d cm 
tg 
k 
Po kp!cm~ 
p kp/cm" 
s' cm 
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Notations 

mean diameter of the cylindrical shell 
stress concentration factors 
radius to wall thickness ratio 
gas pressure 
total pressure at the junction 
structurally necessary wall thickness near the junction 
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S(, Clll wall thickness of the cylindrical shell at the junction, calculated from the mem
brane hoop stress 

l' 

IV cm 
.JlI" cm 
le' rad 
.to cm 
.Y 
z 
D 
E kpicm~ 
F 
G kp 
HI' kp/cm~ 
L 
IH cmkp/cm 
?\ kp/cm 
P kp/cm 
Q kpjcm 
R cm 
0; n 
'I kp/cm3 

~ cm 
,11 

~) 

a kp/cm~ 

Subscripts 

1. 2. 3 
x 

if 
H 
M 
R 
171 

F 
B 

joint efficiency factor 
displacement of the middle surface of the shell 
displacement under the effect of secondary loads 
rotation of the meridian curve 
co-ordinate in meridian direction 
shape factor 
ratio of wall thicknesses of conical to cylindrical shell 
calculation factor 
Young's modulus 
stress concentration factor 
char"e weio-ht 
sta ti~ head of the fluid 
ratio of charge weights 
edge moment 
meridional edge force 
radial line load 
radial edge force 
mean radius of the cylindrical shell 
half apex angle of th~ bottom 
specific weight of the charge 
shell thickness 
Poisson's ratio 
calculation factor 
stress 

referring to cylinder, cone, skirt 
meridional direction 
hoop direction 
bending 
membrane 
resultant 
allowable 
yield poin t 
tensile streni(th 
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