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Introduction

For the strength analysis of large-size thin-walled, conical bottomed
containers and technological vessels of industrial chemistry no suitable stand-
ard formulae are available. Such vessels lie outside the usual size range of
pressure vessels, thus the experimentally determined shape factors for conical
bottoms without rounding off the corners are not valid for the formers. The
outline drawing of a technological vessel with conical bottom, which can be
said typical, is seen in Fig. 3.

The method presented in the following is based on the theory of thin
shells and permits, on account of introducing the shape factor, a relatively
simple design.

1. Investigation of the junction of conical and cylindrical shells
1.1 Edge influence coefficients

In the general case, the elastic deformations of a long conical shell,
loaded axisymmetrically by gas pressure and edge forces, can be described in
the following dimensionless form:

w= wQQ— - wy M + WyF - (la—Db)
w = vQ@ + M - v,P

where
w = w/R,
Q = Q/ER, ‘ (2a—d)
M = M/ER?,
p=p/E.

In the following, the dash mark on top always denotes the dimensionless
form of the given force, moment or deformation.
The coefficients Wg, Wy, ete. are called edge influence coefficients.
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Since the vessels under investigation are made of thin-walled non-shallow
conical shells, Geckeler’s relatively simple approximation is applicable, giving,
in the size range investigated, a practically perfect approximation.

It can be derived that

wo = 2pk32 [eos x ,

Wy = vg = 27k,

vy = 49352 cos (3a—e)
2 —u
w, = —— -k,
P 2 cosx ’
v, & 0.
where
R
k - — - 4
> (4)
p = 3(1 — ) = 1.2854 (u = 0.3). 5)

Formulae (3a to e) yield, in case of = = 0, the edge influence coefficients
of the cylindrical shell.

The terms with subscript p include the deformaticns due to membrane
loads (charge pressure) and membrane forces.

1.2. The system of deformation equations

In the manner usual for hyperstatic structures, let the vessel be divided
into parts at the bottom junction, and indicate the total load acting upon
the individual shell parts (Fig. 1). For the sake of simple treatment, let us
separate the three shells at the common junction line, and separate the com-
mon seam weld, otherwise regarded as of zero rigidity.

Let us write, according to the expressions (la. b). the deformations of
the edges of the individual shells, taking the directions indicated in Fig. 1
as positive.

Wy = —wgQ + wy M, + wyp.,

wy = —vgQy + va My + vpp.

W, == ~—10Q2@2 -y M, - WD » (6a—1)
wy = vQ?_GQ —Um 2-“72 — v P

Wy = _'ngé?, + 10;\13-’%_3 - ‘wp:zf’ :

wy = g0y — vy + 0.

The equality of the deformations of joining shell edges, further the
equilibrium of moments and forces perpendicular to the axis are expressed by
the following equations:
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Wy = W,,

Wy = W, ,

Wy = ws ,

! !

wy = wy ,

21 H N 1 ) D N

QlTQQTQ?,—'P—Of

-~ M+ M,+-M,=0.

Also following relationships can be written:

V,—V,+V,=0,

‘POR
= 2 =
I/l = ‘7\,.\:1 — ER = O.D})O P
Vo= Nepoosa — LT 0000 55 05 17 g
: 2zR - ER E
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2zR - ER E
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Fig. 1. Force system at the junction of shells
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where

p=po+ Hy, (10)

G, = R*mHy, the weight of the charge of the cylindrical part,

G, the total weight of the conical part, and

L= % (11)

Gy

The coefficients of Eqs (7atof) can easily be calculated by means of for-
mulae (6a to f) and (3a to e). The solution of the system of equations, that is,
the determination of unknown forces Q and moments M, with given geometrical
data and under given loading conditions, can be obtained by a simple computer
program.

1.3. Selutions in special cases

In a general case, the loads arising at the junction are complicated
algebraic functions of ki, k,, k;, x, L, p, extremely cumbersome for establishing
in a closed form. The investigation of several practically important cases
leads, however, to simple and perspicuous results. These results will be pre-
sented, disregarding the lengthy algebraie transformations, in the following:

Vessel without skirt, loaded by gas pressure

Be 6, =0, Hy = 0 and 9, = 4;. Then the moment i3

— — 1 - to x —
M,=M, = Pe=-—2__¢V, 12a
T wlfk ay|'k, (22
the shear force is B B _
Q,=0Q,=05Pc (12b)
the secondary displacement is
dw = —0.5ypk32 Pe, (12¢)
where
2
. Veos x ‘, (124)
1+ Veosa
5 1
P = E—tg o JI;—O .

Formulae (12a to d) contain no term directly including pressare pg,
since the stresses arising from unequal membrane deformations are neg-
ligible in comparison to stresses due to a break in the meridian curve.

The relationships (12a to d) can reasonably be applied to the case of
two cylinders, too, which are loaded on their adjoining edges by a line load P.
Then ¢« = 0, c = 1.
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It is remarkable that in case x = 30° ¢ = 0.964, that is, the shfar force
and moment arising in a conical-cylindrical shell under line load P hardly
differ from the shear force and moment arising in a eylindrical shell under the

same load.

With the method presented, also the analysis of the junction of two

conical shells is simple, but now this case is disregarded,

Vessel with skirt support

A practically very important case is that of 6, = §,, that is, the wall
thickness of the cylindrical container part and of the skirt are the same.

Further, be o < 45°, k; = R/d;, 5 = 0,/0;.

In case of an edge load P (case A of loading), by considering formula (9),

4D
— 405223 — 1 Vs tga _
My, — 1405223 — 1) Vzcos ) 7.,
D 4y Vk,
_— 2 tga ¢
M, = -
2A D 4lp Vkl 2

Myp =M, — M,,,
and the secondary displacement

1+ 22(1 — 0.5/} zcosa )

Aty = —0.5pk,302 -

0

where

D=0,12524 =32 L 1.

tgocv .

(13a—d)

(13¢)

(14)

In case of a container loaded by a gas pressure p, (case B of loading),
the moments, force and displacement arising from the differenice of membrane

deformations are the following:

2 —u 2 z2+4l/zcosoc-—i—8/(zcoscc)—4i

JWQB -
) 2 1692 D k,
- —_— — 2 — = p
Qo = (0.522 = 2/ Vzcosa )y V&, Mag — L= P
2 4y Ky
Mg = ~1—ZW23 - Qz?—' :
2 4y Vk,

My = Mip — My,

dwg = —2yk3'2 [ cos a Qop + 29%k3M 5.

(15a—e)
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2. The method of design
2.1. Calculation method of stresses

The stresses arising in the extreme fibres of a shell are given by the
following formulae:

OxR == Oxpm = Ox » (16a—b)
— { !
GoR ™ OpM T UOgo T Op »

where for a conical, in case of x = 0 for a cylindrical shell

N, _
o = —— = EN.k,
6 X
o= Lot Hy R pot Hy p 17,
cos a 0 cos &
oo = E -2 — B,
o — &+ M 6 MRE,

Opy 22 [0y -

With the methods given in the previous chapters, the moment on the
edges (M, = M) and the secondary displacement (4%w) can be determined
and the stresses calculated.

It lies outside the scope of this paper to discuss in detail, how the stresses
at a greater distance from the edge of the shell can be calculated. In this con-
nection we refer to the technical literature [3].

It must be noted, however, that the stresses rapidly decrease when
moving away from the edge; therefore a change (decrease) in the wall thickness
at a suitable distance from the junction has no influence on the value of the
stress peak.

In the numerical example No. 2, the stress development in a vessel of
given dimensions is shown.

2.2, Introduction of siress concentration factors

.Let us relate the concentration factors of the stresses to the hoop mem-
brane stress arising in the cylinder, that is, be

F—_%R _ xR (18)
o1 pk;

The greatest stress in the range investigated is always axial.
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Be the cylinder and the cone denoted by subscripts 1 and 2, respectively.
Quantities with no subscript refer to the tested shell. It can be shown that in

a general case
0.5 2V e 2V
F= -— + g+ fVk—", (19)
coso p P

where the first term is characteristic for the membrare stress, the second for
the stress arising from the difference of membrane deformations, the third,
finally, the stress originating from the break in the meridian curve. If §; = ¢,,
both g and f are merely functions of « and z = §,/d,.

It is valid that

1 Oypi A 1 6MAk2 = (57 1.01(9FF =
= e = e - = 6M A VE 1222V .
I = e TE @ 4 PR H GV JP)

(20a—b)

OxHB _ 6M3k2

Gq:]VIl Pkl

g ==
[l

= 6Mgky/(sP) ,

where k, and k are the radius to thickness ratios of the cylinder and of the just
tested shell, respectively.

Vessel without skirt, loaded by gas pressure

Take the abowve case, with 0, = ¢,, by = k;. With the use of the rela-
tionships (20a), (12a), (12d), (8a) it can be derived that

6k M, _ 2Ycosx 3
VE 2V, P, 1+ Veose 4y

fi=h=f=-

Obviously g; = g, = 0; further considering that V/p, = 0.5, the stress
concentration in the cone:

- 2V l_
o 05 0.583b1",,—°s—“-—- e |k . (22)
Pok1 cos 1+ Veosa

The stress concentration factors f;* calculated with the formula (21) are given
in the second column of Table 1. The numerical values agree with the values
found in lLiterature [2].

Vessel with skirt support

The calculation is entirely analogous with the previous case. As a result,
it is obtained that
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fie 6 M, ,Jc 1 4+052%3 —1/|zcosx) 3 to o
AP D a0
6M 5 ak3 1
f2:——_hé_‘_—_":—*:'———“—3—tgd, (233_0)
ky VE(2V o/p) D 4y
6.M 5k} -
817 % = 6Mpk, ,
kp
_ 6Mugk3 2~y 3 2+ 4)zcosa - B/(scosx) — 4
=05 2 8y D

The values of factors calculated in this way are given, for the case of
01 == 0, = 0,, in Table 1.

Table I
a® ¥ 5 & fa &
10 0,103 | 0,007 0,089 0,048 0,829
20 0,209 | 0,198 0,073 0100 0.853
30 0,323 | 0.310 0,030 0158  0.905
15 0,533 | 0523 | —0.039 0275 | 1,062

It is obvious from the table that the stress state of the upper cylindrical
shell is not considerably different whether there is, or there is no skirt (f; =< f;).
The factor g,, characterizing the difference of membrane deformations, is not
high.

The factor f, of the conical shell is practically half of fi: thus, in this
regard, the skirt releases the cone. At the same time, however, a considerable
increase appears in the secondary stress arising from the difference of mem-
brane deformations (g,).

2.3. Introduction of the shape factor

The conical and cylindrical parts of the junction are statically adequate, if

GXR:“B;'{"FSan tv, (248)
and
s'= 02> ——pR F, (24}))
G U

where F = F(x, 0,/0;) is the stress concentration factor of the tested shell.
These formulae are valid in the elastic range. In non-elastic range, the
stress concentration factors are already not characteristic of the value of
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stresses, but they are suitable for the limitation of the degree of plastic defor-
mations.
Be the necessary wall thickness

7

s'=1s5 'y and sj= ——, (25a—D)

where the shape factor y expresses how many times thicker wall is needed
in case of a structural shape different from a cylindrical membrane shell.
In order to limit the degree of plastic deformations, be

F
T (26)
that is, since
O‘F O.B £y Xl
Om = or B 27a—b
T15 2.6 ( )
2.6
Otomiral = 15 Op = 1-730'F , OT
Onominal = 0B + (28a—b)

The above consideration is not valid to cases where the structural material
has no suitable plastic reserve, if certain causes may provoke embrittlement,
alternating loading or stress corrosion may occur, discontinuities exist on the
adjoining seam of the conical bottom, giving rise to fracture.

Comparing the suggested design formula with the Hungarian, German,
etc. standard shape factors, valid for conical bottoms, the application of
standard shape factors can be stated not to be sufficiently safe in case of rela-
tively thin shells occurring in container-building; i.e. they permit too large
plastic deformations, likely to cause the failure of the device. Namely, the
shape factors of standard formulae are based on experimental investigations
on the usual size range of pressure vessels.

The shape factor can be determined, in knowledge of the stress concentra-
tion factor, by iteration, or, in knowledge of s;, in the following way:

Be ky = Rs,, k, = RJs]. (29a—b)

The shape factor of the cylindrical part, according to formulae (19) and
(26), for py = 0, p = Hy,

Fy &1 + filk, 2172/?

Y I 2.6 '

Considering also formula (25a),

2.6y, — g = (flgvz/ﬁ)zko/;‘" .
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Since for the cylindrical part g, <€ 2.6y,

vy = L/ [fl_zzr_/fl} k. (30)

The values calculated by formula (30) are shown in Fig. 2.
The suggested method of strength analysis is as follows: assuming
0; = 0, = 0;, the values of y; and s; are determined from formulae (30) and

30
y 450
/
25 /4/
//
/
— n o e e st e e o e o 550
20 o
! L] 30
// — el
5 A /’/ 200
..{..-_..,4-__ ..... gt 300
o
7 =
e Lo Lol o0
1,0 -—-1 100
05
0 100 200 300 400 500

Ko

Fig. 2. Values of the shape factor for 6, == 8, = 01 by = R/st = Hy/(0p, * 0)s Onp/Om = 2,6
L = 0. Note: Full line = computed shape factor, Dashed line = standard shape factor,
valid for pressurized conical heads

(25a), then the stresses are calculated and checked by formulae (23), (19), (24),
with the wall thickness obtained above, both for the cone and the cylinder.
If necessary, after changing the wall thickness of the cylinder or of the cone,
calculation and checking of the stresses are iterated. Modifications may be
required e.g. by the joint efficiency factor different between the cylinder and
the cone. Of course, y, cannot be smaller than 1.

Be the length of the thickened part surrounding the junction 2.0 |Rs’.

Let it be noted that the shape factor introduced in this way is analogous
with the shape factor, valid for conical reducers, to be found in the ASME
Boiler and Pressure Vessel Code (Section VIII, Div. 2).

Numerical example No. 1

The data of the container with structural design according to Fig. 3 are
the following:
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-1

— 20°

H = 2500 cm &
y = L5 - 10-% kp/cm3 d = 1000 cm
L =101 G+ v == 1600 kp/em?,

From formulae (25b) and (29a):

o _ 2500 -15-10-9-1000 ...
0 2 - 1600 R

500
1.172

ko = = 426.7 .

Assuming z = 1, from Table 1, f; = 0.198. g, = 0.073, from formula
(8b) 2V,p =2 - 0.5(1 + L) = 1.1.
According to formula (30)

3
y= [ [2228 1T a267 = 1445
26

Thus, from formulae (25a) and (29b)

s'"=1.17 - 1445 =1.69 cm,

The stress concentration factor according to formula (19):
F,=0.073 - 0.1981295.8 - 1.1 = 3.82.
The maximum nominal stress:
Onom = pkF = 3.75 - 295.8 - 3.82 = 4237 kp/em?

Gpom 4237
2.6 2.6

= 1630 kp/em® o< 1600 kp/em?.

Accordingly, the wall thickness of the cylinder is suitable.

The wall thickness of the cone can similarly be checked.

If no plastic deformation is permitted, but it is allowed for the bending
stress to exceed the membrane stress by 1.4, then

y= | [22%8 1l 4267 = 2.18.
T1a |

The German design specification AD-Merkblatt B2—1969, further the
Hungarian Standard MSz 138251970 specify the shape factor of a vessel
bottom of dimensions as given above, as y = 2.0/2 = 1.0; theyv are evidently
not valid in this size range.
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Fig. 3. Diagrams of stresses in the elastic range « = 20° R/§, = 200; Hy = 3,75 kp/em®;
L=0.1: 8 = d,= 4,

Numerical example No. 2

Fig. 3 shows the diagrams of characterisiic stresses arising in the vessel
investigated in example No. 1, in case of R/9 = 200, computed by a computer
type ODRA-1204.

Summary

The stress concentration factor for the surrounding of the cone-cylinder-skirt junction
is determined using the edge influence coefficients calculated with Geckeler’s approximation.
For practical calculation purposes, a shape factor is introduced, allowing a limited plastic
deformation of the wall. In case of large-size thin-walled structures, the necessary wall thick-
ness is considerably larger than the one calculable according to standards applied in the
design of pressure vessels of conventional dimensions.
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Notations

d em mean diameter of the cylindrieal shell
g stress concentration factors
k radius to wall thickness ratio
pPo kp/lem®  gas pressure
p kp/em® total pressure at the junction
s cm structurally necessary wall thickness near the junction
s, em wall thickness of the cylindrical shell at the junction, calculated from the mem-
brane hoop stress
v joint efficiency factor
w cm displacement of the middle surface of the shell
s em displacement under the effect of secondary loads
w’ rad rotation of the meridian curve
x cm co-ordinate in meridian direction
¥ shape factor
z ratio of wall thicknesses of conical to eylindrical shell
D calculation factor
E kpjem®*  Young’s modulus
F stress concentration factor
G kp charge weight
Hy kp/em* static head of the fluid
L ratio of charge weights
M cmkp/cm edge moment
N kp/em meridional edge force
P kp/em radial line load
Q kp/em radial edge force
R em mean radius of the cylindrical shell
o [°] half apex angle of the bottom
v kp/em?® specific weight of the charge
¢ cm shell thickness
u Poisson’s ratio
7] calculation factor
o kp/em? stress
Subscripts
1.2,3 referring to cylinder. come, skirt
x meridional direction
T hoop direction
H bending
M membrane
R resultant
m allowable
F vield point
B tensile strength
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