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1. Introdnction 

1.1 Purpose of the paper 

The rapid evolution in road traffic imperatively calls for the development 
of an up-to-date highway network requiring a great number of engineering 
structures. 

Owing to the modernization of bridge construction the prefabrication 
gets ever greater significance. The great number of short-span bridges requires 
mass prefabrication on the hasis of standard designs. In this respect several 
problems (manufacturing, transportation, field assembly) have to be dealt 
with, in close connection to each other. 

Several methods of assemhling main girders in site are known [1]. 
Connecting methods following the commonly used, traditional design made 
more difficult the fabrication of main girders and required much field work. 
To eliminate these inconveniences, in the Soviet Union [2], in the United 
States of America [3], in Czechoslovakia [4] and in the German Democratic 
Republic [5] a system of connecting the main girder units has been adopted 
where the connecting elements are not exposed to bending moment. Significant 
advantages of the bridge structures assembled in this way are that the very 
same girders may be applied for hridges of whatever skew arrangement ill 
plan little and only simple field work is required, and in applying main girders 
or appropriate torsional stiffness, the system ensurt's an advantageous load 
distribution. A general design method for such structures also applicable to 
skew bridges is not referred to in the literature to the author's knowledge. 

Structural designs of the bridges built so far are not uniform, thus, it is 
impossible to work out a method of design holding true for all forms. In this 
paper, by making allowance for an easy to handle, mathematical solution, 
the existing structural designs have been kept in view. 

In the following, the design method of skew bridge structures comprising 
hinged main girders will be presented. 
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The field of application of the mathematical procedure chosen for the 
solution of the problem covers a wide range of engineering calculations. This 
is why first the general method is reported, and only later the solution to the 
problem. 

To the belief of the author, this calculation procedure is likely to ease 
the solution of all problems related to the strength of materials, the theory 
of stability and the vibrations at the desired accuracy with the help of a digital 
computer of low capacity, even those of surface structures hither to escaping 
analysis. 

Notations 

In this paper the following symbols are used which, in the text, are not explained or 
their meaning cannot distincly he understood from the figures. 

E -modulus of elasticity: -
G shear modulus: . " 
le torsional rigidity; 
Ix. Iv flexural moments of inertia about axes x and ,r, respectively; 
It . warping rigidity. 

2. Method of analysis of snrface structures 
"with the help of integral equations 

For treating the problems mathematically, the results of the theory of 
integral equations have been utilized [6] [7]. Application of integral equations 
has several advantages: the possibility of numerically solving the problem may 
be predicted, the boundary conditions may easily be satisfied, and procedures 
of identical structure may be developed for solutions to different problems. 
Their disarlvantages which, in the author's opinion, prevented their general 
practical acceptance, can be eliminated by using a computer of even low capac­
ity: size of the set of equations to be solved is reduced, convergent series of 
functions may easily be computed at the desired accuracy. 

2.1 Basic principle of the procedure 

The surface to be analysed, which can be either a slab, a disc or a shell, 
is cut up by vertical planes into subregions (Fig. 1). The analysis is carried 
out in respect of these subregions. The unknown internal forces acting on the 
cross section are applied as external forces on each of the subregions, at their 
edges. The incidental intermediate constraints also are substituted by external 
forces. 

In the case of continuously distributed internal forces, the force func" 
tions, i.e., the moment functions, and in the case of a concentrated force its 
value are considered as unknown (Fig. 2a). The displacement resulting from 
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all these forces (the given externa] load and unknown junction forces) acting 
on a subregion may be established. At the locations of the cut-through connec­
tions as many deformation conditions may be established as there are unknown 
forces. The relationship between deflections and forces may be deduced with 
the help of the influence functions for all the missing connections. The condi­
tions of connections may be expressed by the integral equations mentioned 
above. 

The displacement influence functions may be established by virtue of 
the existence theorem of the Green's functions [6] and these will be the kernels 
of the integral equations. These influence relationships need only be known 
for a few simple basic cases; ·with their help also complex problems may be 
solved. By solving the set of integral equations the desired result may be 
obtained from the conditions of connection at the missing junctions. 

Thus, for example, in analysing the slab structure in Fig. 1, according 
to the theory of strength of materials, not to be detailed here, it is sufficient 
to apply the usual solution of the simply supported slab sho"wn in Fig. 2b; 
the result may be found at the desired accuracy by soI-dng a set of equations 
comprising 11 unknown values. 

On the basis of the results of the theory of the set of integral equations, in 
respect of the procedure, the following statements may be made. 

The kernel of the integral equations is real, degenerated, symmetric, 
and will be positive definite o"wing to their physical content for any possiblc 
form of distribution of the force function. 

Fig. 1 
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Due to these properties of the kernel, by virtue of Fredholm's theorem 
of alternatives [6] [7], the set of equations has a definite unique solution, 
provided the parameter of the equation is not an eigenvalue and the function 
of all external forces is not identically equal to zero. The integral equation 
has at least one eigenvalue, this and the further ones are real values, and the 
associated eigenfunctions are orthogonal. In accordance with the Hilbert­
Schmidt thcorem, the solution may be expanded into series with respect to 
the eigenfunction which results in an absolute and monotonously convergent 
function. 

In accordance with the foregoing it can be stated that there exist numeri­
cal solutions to the problems exposed to be achieved in the way as follows. 

In the analyses according to the theory of strength of materials, the 
eigenfunctions of the various integral equations should be defined, and by 
replacing the result in the form of series according to the eigenfunetions into 
the set of integral equations, the yet unkno·wn coefficients may be computed 
from a set of linear equations by identifying the functions established on the 
basis of the condition of osculation, thus, yielding the unknown junction forces. 

In analyses according to the theory of stability and vibration, the set 
of integral equations may be reduced to a single integral equation, and the 
eigenvalues of this equation deliver the values of critical force and natural 
frequency. It should be noted that for problems of the theory of vibration, 
after multiplying by the mass distribution function, the kernel may be sym­
metrized. 

2.2 Advantages of the procedure 

Thp. advantages descrihed in the preceeding paragraph may be summed 
up as follows. 

Surfaces of any form and with any support may be assembled from a 
few types of "elementary regions". Thus, the actual investigations must affect 
identical predetermined elementary types, thereby the way of solution is prede­
termined as well. 

The various problems of the theory of strength of materials, stability 
and vibration may be treated according to the same concept and in the same 
form. 

The originally two-dimensional problem has been reduced to a linear one. 
The boundary conditions may readily be followed by making use of 

the elementary regions. 
The possible interior and exterior supports do not necessitate the establish­

ment of new kernels. 

In the solution any desired accuracy may be achieved, independently 
of the number of elementary regions, except inclined edges. 



3RlDGE STRUCTURES COMPRISI"G HI"GED GIRDERS 147 

A small set of linear equations is needed to the solution to the problem 
of an advantageous structure and this easy to solve. 

The convergent series may quickly be computed with the help of a digital 
,:0mputer, and the accuracy requirements may be given in advance. 

No large storage capacity is required from a computer, and several 
problems may even be solved without a computer, due to the advantageous 
structure of the small set of linear equations. 

3. Analysis of hinged bridge structures 

3.1 Basic Assumptions 

With respect to the static model serving for basis for the computations 
ill deriving the procedure, the folIo·wing assumptions have been made: 

1. The structure consists of simple beams of constant, simply symmetri­
cal, but not necessarily identical, cross sections. 

2. The beams are connected by ideal in-plane hinges, their axes being 
normal to the plane of the cross sections. 

3. The hinges continuously connect the main girders throughout their 
length. 

4. The beams are only subjected to forces causing elastic deflections. 
5. Deflections due to shearing force may be neglected in comparison 

with those due to the bending moment. 
6. The restraint of the ends of beams against torsion does not prevent 

the beam ends from bending rotation. 

3 ') Setting of the problem 

The calculation procedure has been worked out for a skew bridge struc­
ture of obliquity et (Fig. 3). 

The investigation has been carried out in rcspect to the primary system 
obtained by omitting the hinges. Unknowns are the uniformly distributed 
vertical and horizontal forces p(z) and h(z), respectively, as well as the vertical 
and horizontal displacemcnt functions of the hinge axis y(x) and u(z), respec­
tively. The unknown forces are marked with a subscript consisting of two charac­
ters, the first of which designates the serial number of the hinge, and the 
second, that of the beam, that is, the reference system. If the omission of the 
second character in the subscript referring to the beam, does not involve 
misunderstanding, it may be omitted. Distribution of the hinge forces is as­
sumed over length L, according to Fig. 3. 

Let us denote the Green's function associated with the differential equa­
tion of the bent beam in the case of vertical bending by Gy(z, 0; in the case 

4 Periodica Po \ ytechnica ~l. 1 j /2. 
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of horizontal bending by Gx(z, C); and that belonging to the differential equa­
tion of torsion, by G'I'(z, C). This last one was established for the dimensionless 
unit torsional moment. 

P1(Z) P2(Z) P3(Z) Pn_1(Z) 

f?'1 (z)J [Y2(Z)J[Y3(Z~ I>'n-1(Z)] 

Fig. 3 

Under the effect of forces acting III the posItIve direction, as shown 
in Fig. 4, the vertical and horizontal displacements of the i-th row of hinges 
may be established with the help of Green's functions. It may be pointed 
out that along the axis of the row of hinges only the forces acting on the t·wo 
adjacent beams cause relative displacements. Shift of the axis of the row of 
hinges may be 'written in the form of integral equations with the help of 
displacement influence functions derived from the Green's functions. After 
reduction of these equations and introduction of the notation as follows 

b2 

Kli (z, n = GYi (z, n + 4Grpi (z, n 
b2 

GYi (z, n - 4 G'I'dz,1;) 

K3i (z, n = GXi (z, n + t2Grpi (z, C) 

KM (z • .;') ~ Grri (z, n 2 . 
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Fig. 4 
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the function of the vertical displacement at the left-hand side beam becomes 

L L 

Yii (z) = .r Kli (z,;) Pi, ;(!;) de - J K 2dz, C) Pi-!,i (I;) de +-
o 0 

L 

+- S K4i (z, C) [hi,i (!;) - hi-l,i (!;)] at; +- YOi,i (z) 
o 

(2) 

where Yo(z) is the displacement function due to the external load. The fundion 
of the horizontal displacement at the left-hand side beam will be 

L 

Uii (z) = J K4i (z, C) [Pi,i (e) + Pi-J,i (~)] ae +­
o 
L 

J K3i (z.;) [hi,i (e) - hi-l,i (f;)] af; +- UOi,i (z) 
o 

where uo(z) is the displacement function due to the external load. 

(3) 

Functions (2) and (3) may also be 'Hitten as calculated for the righl­
hand-side beam 

and 

L 

Yi, i+1 (z) = - S K li+1 (z, e) Pi, 1+1 (e) ae + 
o 
L 

+ J KZi+1 (Z, C)Pi+l,i+1 (t;) ae 
o 
L 

+ J K 4i+1 (Z, n [hi,i+1 (!;) - hi+!,i+l (;)] a!; + 
o 

+- YOi,i-.,-l (z) 

L 

lli,i+1 (z) = J KMl (z,!;) [Pi,i+1 (f;) + Pi+!,i+1 (,m d!; + 
o 
L 

+ .r K3i+! (z, n [hi+J ,i+1 (e) - hi,i+1 (;)] at; + 
o 

llOi,i+l (z) 

(4) 

(5) 

By wrltmg down the above equations for the functions Yi,j(Z) and Ui,j(Z) 
where i = 1,2, ... ,n-l andj = 1,2, ... , n; in the range 0 <j-i :s:;; 1, and 
taking into consideration that Po(z) = ho(z) = Pn(z) = hn(z) = 0, the set of 
integral equations expressing the equilibrium and compatibility of the strUl~­
ture is obtained. Solving this set of equations yields functions Pi(Z) and hi(z). 

On the basis of what has been said in paragraph 2, solution of the integral 
equations by the convergent series of the eigenfunctions may be obtained 

4* 
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for any form of the kernel. In order to speed up the convergence of the result 
functions (1) have to be expanded into Fourier's series. 

The Green's functions of bending are given by the trigonometric series 
of the deflection diagram constructed for the case of a load P = 1 acting at ~ 

G ( ~' m~ 2 £3 . mn . mn ~ 
y z,:,) = /, ---- SIn -- z sm (, . 

;;::\ m 4n 4EJx L L 
(6) 

The function Gx(z), only differs from (6) in the value of the flexural 
rigidity: EJ y in lieu of EJ X' 

In analysing the torsion one distinguishes pure and warping torsion [9]. 
The differential equations relating to the warping torsion of beams of closed 
cross-section are obtained in the very same form as that of the beams of open 
cross-section [10]. The pure torsion may be applied as an approximation, 
if the following inequality holds [10]: 

G (L)2 Jf~ -. ·Je· 
E n, 

(7) 

Denoting the flexural rigidity by Tc: 

(7a) 

where 

(7b) 

Inequality (7) being satisfied, from the two values the former one should 
be chosen. This, in the further discussion both the warping and the pure 
cases of torsion are taken into account· 

~ m=:; 2 L . mn . mn 
G (z L) = ~ ---sIn-zsln--c' cp ., ~ ,/ 

';::\ m2n2Te L L 
(8) 

Being aware of the Green's functions, on the basis of (1) the kernels are given. 

3.3 Solution to the problem 

In order to solve the set of integral equations, first, a solution to one 
equation should be found. The eigenvalues are simple to find, due to the 
orthogonal functions of the degenerated kernel. Their values have, in the 
analysis of the bridge structure, no more significance than their utilization 
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for the determination of the minimum torsional stiffness ,.,-here the participa­
tion of all of the main girders of the bridge in the development of the stress 
pattern is ensured. The value may be calculated from the relationship 

(
' bn )' 2 Tc=EJx - . 

- 2L 
(9) 

If the value of the torsional stiffness of each of the main girders is the same 
as given by (9) then, only the loaded beam and the adjacent two beams are 
engaged in the development of the stress distribution. In order to ensure the 
participation in load bearing of all of the girders, the value of the stiffness 
against torsion must be higher than that calculated from (9). The eigenfunc, 
tions will be obtained in the form 

( ) 
. mn 

rpm Z = SIn -- z . 
L 

(9a) 

Thus, the solution IS given by the functions 

m=~ mn 
p;(z) = ~ pdm) sin _J Z 

m=1 L 
(10) 

and 
m== mn 

hi (z) = :5.' hdm) sin _J z. 
;;:1 L 

(ll) 

The still unknown coefficients h (m) and Pi(m) may be found as follows. 
The results (10) and (ll) are substituted into the set of Eqs (2) to (5) 

and integrated. 
In carrying out the substitution, it has to be taken into consideration 

that each of the girders defines its own system of coordinates. The unknown 
forces are always to be sought in the system of coordinates of the beam of 
t he very same serial number. Introducing the notation 

k li (m) = 
2£3 brL 

m4n4EJxi 
+ 2m2n 2T ci 

kZi (m) = 
2£3 brL 

m4n 4EJxi 2m2n 2T ci (11 a) 

kSi (m) = 
2£3 2t~L 

m4n4EJyi 
+---'-

m2n2Tci 

k4i (m) = 
bitiL 

m2n2Tci 
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further 

b· + b"l I 1-:- too ex 
2 ::> 

(lIb) 

we can write dO'wn the vertical deflection function (2) to the i-th beam 

Yi,i (z) = ~ ~ {-k2,i(m) Pi-l(m) cos mLn Ci-l + 
~ m=1 

[ 
mn ]} kli (m) Pi (m) + k 4i (m) hi (m) - hi - 1 (m) cos L Ci-l • (12) 

. mn ( ) 
SIn TZ + Yo,i,i Z . 

The function of the horizontal displacement for the i-th beam may be 
obtained with the help of (3) 

L = { [ I . mn ] Ui,i(Z)=2d k4i(m) Pi (m) TPi-l(m)COSLCi- 1 + 
(13) 

Both of these displacement functions may also be calculated for the 
(i 1) th beam from Eq. (4): 

Yi,i+l Z = -:5' - kli-:-l(m)pdm cos Ci + () L = { ) mn 

2:1 L 

+k2i+dm )Pi+l(m) k4 ,i-'-1(m) [hi (m) cos '~t: Ci- (14) 

- hi+l (m) J} sin ~~"t Z + YO,i,i+l (z) 

and from Eq. (5) 

Ui,i+l (z) = ~ ~ k4 ,i+l (m) [Pi (m) cos mLn Ci 
,.. m=l 

[ 
( mn ]} . mn I +ka,i+l(m) hi +1 m)-hi(m)cosLci SIn L Z,UO,i,H(z), 

(15) 

Carrying out the transformation of coordinates required, the functions 
at the one side (12) and (14), and at the other one (13) and (14) may be set 
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equal, since for the value of the displacement functions the very same result 
will be obtained by calculating either from the right-hand or the left-hand 
side beam. After arranging the ohtained equation, it is multiplied by the func~ 
tion sin (m ;r;jL)z, and integrated in the range z = 0 to L; then the following 
equation will be obtained for the unknown coefficients where in the left-hand­

side the terms of the expressions )'O,i, i+1 (m) and )'O,i,i (m) denote the Fourier's 
coefficients of the displacement functions calculated from the given load 

mn m;r; 
k2i+-l (m) cos L CiPi+1 (m) - kM (m) cos L Ci-l· 

cos ~n dihi- 1 (m) + [kM (m) cos ~'7 di - k4 ,i+1 (m)· (16) 

mn mn ] mn 
cos L Ci cos L d i + 1 hi (m) + k4,i+l (m) cos L di +1 

h 2 [ mn di i+1 (m) = L )'O,i,i+1 (m) COST di + 1 -

- )'0 - - (m) cos d - . mn ] 
,1,1 L 1 

From the equality of the functions expressing the horizontal connection 

of the beams, we have 

k () m;r; mn d ( [ ) m;r; d I 
"4i m COST Ci-l cos L -iPi-l m) + k4,i(m cos LiT 

mn mn ] 
k4 ,i+1 (m) cos L Ci cos L di +1 Pi (m) - k4,i+1 (m)· 

(17) 

[ 
mn 

. h i - 1 (m) + k3i (m) cos L di 

mn ] mn . cos L di+1 hi (m) - k3i+1 (m) cos L d i +1 = 

2[ mn mnJ = L ,UO,i,i+1 (m) cos L di+1 - uOi,i (m) cos L di 
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wherein the term UO,i,j (m) in the right-hand side of the equation denotes the 
Fourier's coefficients of the displacement functions associated with the exter­
nal load. 

By applying Eqs (16) and (17) to the cases i = 1,2, ... , n-1, the 
unknown coefficients may be calculated from the set of equations for the 
values m = 1, 2, 3, ... ,whereby the problem has been solved. 

On the basis of investigations performed with respect to main girders 
rigid to torsion [10], the horizontal hinge forces - for the accuracy needed 
in practice - may be ignored. Thus, substituting the values hi(z) = 0 (i = 

= 1,2, ... ,n-1) into the results obtained so far, and omitting Eq. (17) 
expressing the horizontal connection, significant simplification may be achieved. 

The obtained [10] result analysing the rapidity of convergence of the 
series of trigonometric functions, was the function of beam geometry. In the 
case of bridge structures of box-section main girders where the horizontal 
rigidity of the beams is significantly higher than the minimum value given 
by the relationship (9) determined from the eigenvalues of the integral equa­
tions, the convergence is very rapid. In investigating the deflections of the 
different beams, even if a single term is taken into consideration, the error, 
due to the neglect of the other terms, is lower than 2 to 4 per cent. Therefore 
the set of Eqs (16) yielding the final result of the problem, needs only be 
solved for the minor values of m which - considering the structure of the 
set of equations and negligibility of the horizontal hinge force - does not 
give hard work, nor requires the use of a computer. By making use of the 
approximate procedure to be described in the next paragraph, even this 
calculation work may be reduced. 

The sets of Eqs (16) and (17), deliver the hinge forces and hereby, 
the problem is solved. In knowledge of the hinge forces, stress and deflection 
data may be evaluated. 

3.4 Calculation of the coefficients of trigonometric series 
by the iterative method 

In applying the procedure described in Chapter 2, the calculation of 
the coefficients of series according to the eigenfunctions is rather frequently 
needed for various values of m. This necessitates repeated solution to the sets 
of equations similar to that given by (16) and (17). 

In the following, a relationship will be deduced for the- determination 
series of the coefficients of trigonometric by the iterative method. This pro­
cedure yields exact results if 

a) all terms of the equation defining the unknown coefficients of the 
harmonic series converge at the same rapidity; 

b) the principle of superposition is valid. 
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Let us write the equation to be solved in the form 

A(m)· x(m) =y(m) (18) 

where y (m) is a known vector and A (m) a coefficient matrix complying with 
the conditions a) and b). The vector x(m) has to be found. In the case of an 
equation satisfying the above two conditions, the coefficients may be deter­
mined by iteration decomposed into two factors 10 or even, without decom­

position. 
The vector y (m) comprises the Fourier's coefficients of the displacement 

functions induced by the given external load, therefore the structure of coef­
ficients which might be taken into account in the solution, has been con­

sidered. 
On the basis of condition b) it is sufficient to find a solution to y (m) to 

meet the following requirements: the elements of the known vector should be 
decomposed into two factors depending on m; the first of them will be constant 
and the second a trigonometric function. Two vectors may be formed from 
these elements whose logical multiplication gives the original vector. In the 
elements of the second vector only the identical trigonometric functions of 
identical quantities are involved, and in respect to the first vector, the follow­

ing relation is true 
(a) 

wherein I~(m) is a scalar number. 
On the basis of condition a) it may be written 

A(m+ 1) = c(m)' A(m) (b) 

wherein c (m) is a scalar number. 
With these notations, making use of the known relationships relating to 

the product and sum of the trigonometric functions - if the solution to the 
values m = k and m < k is known, then the following relationship is obtained 
for the value of the vector x (k + 1): 

x(k+l)=,!:f3(k) cos n ao.x(k)- f3(k)·f3(k-l) x(k-l) (16) 
c(k) L c(k)c(k-l) 

wherein ao is a constant depending on the type, distribution and location 
of the load. 

From this relation either the total value of the vector x or an arbitrary 
number of its elements may be calculated to any value of m. 

In the case of the bridge structure analysed, relationship (19) may be 
applied as an approximation, provided the torsional stiffness of the main 
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girder is significantly greater than the valne from Eq. (9). In this instance, 
no iterations are needed to the set of eqnations of favourable strncture for 
achieving the desired accuracy. 

Summary 

Elaborateness of the analysis of bridge structures with hinged main girders called for 
a computerizable though not necessarily computerized method. 

The possible applications and advantages of the set of integral equations in analysing 
surface structures are related to problems of the theory of strength of materials, stability and 
vibration. There is a variety of problems lending themselves to identical computer methods 
of solution at the desired accuracy. 

In analysing. a skew bridge structure comprising hinged main girders - to achieve 
practical accuracy - only a set of equations, simple in form. has to be soh'ed, of a structure 
eliminating the need for a computer. 

In a subsequent paper, the calculation of a bridge structure consisting of beams of 
usual form will be dealt with, together with the analysis of the given problem on the basis 
of another model. 
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