EINFLUSS DES AXIALSPALTES AUF DIE KENNLINIEN VON FLÜSSIGKEITSRINGMASCHINEN

Von

R. PRAGER and P. BRAMER

VEB Kombinat Pumpen und Verdichter Forschungszentrum Halle (Saale)

(Eingegangen am 16. Januar, 1973) Vorgelegt von Prof. Dr. J. VARGA

Einleitung

Der von Flüssigkeitsringmaschinen geförderte Gasvolumenstrom weist eine sehr starke ausgeprägte Abhängigkeit vom jeweiligen Verdichtungsverhältnis auf, obwohl sie auf Grund ihrer Wirkungsweise zu den Kolbenmaschinen zählen [2], [5], [6], [7]. Die starke Abhängigkeit des Volumenstromes vom Verdichtungsverhältnis ist auf die Nachgiebigkeit der Flüssigkeitsringoberfläche, auf die Sättigung des geförderten Gases mit Flüssigkeitsdampf sowie auf die Leckströmung durch die Axialspalte zwischen dem Läufer und den Gehäusedeckeln zurückzuführen. In [7] wird u. a. der Einfluß der Stabilität des Flüssigkeitsringes sowie der Dampfsättigung bei konstantem Spalt zwischen Läufer und Gehäusedeckeln auf die Kennlinien und das Betriebsverhalten von Flüssigkeitsringmaschinen im Arbeitsbereich als Vakuumpumpe und Verdichter untersucht. Die vorliegende Arbeit soll in Ergänzung hierzu den Einfluß veränderter Axialspaltgeometrie erfassen.

Verwendete Bezeichnungen

 N_a Antriebsleistung

- N_e effektive Verdichtungsleistung
- N_i Innenleistung
- N_{is} isotherme Verdichtungsleistung (bezogen auf gesättigtes Gas)

 N_{n-is} isotherme Nutzleistung (bezogen auf trockenes Gas)

- P Druck
- P_D Druck im Druckstutzen
- P_S Druck im Saugstutzen

 P_u Umgebungsluftdruck (Barometerstand)

 P_D/P_S äußeres Druckverhältnis

 P'/P_S inneres Druckverhältnis

R Gaskonstante

- S Spaltweite zwischen Läufer und Gehäusedeckel
- T absolute Temperatur

V Behältervolumen

V_S Volumenstrom

- V_{ν} volumetrischer Verlust
- X Verhältniswert
- Y Vakuum
- b Läuferbreite
- f Funktion von
- m Masse
- n Drehzahl
- r_g Gehäuseradius
- ra Laufradaußenradius
- r_i Laufradnabenradius
- r, innere Begrenzung des Flüssigkeitsringes
- β Schaufelwinkel
- η_{is} isothermer Gesamtwirkungsgrad
- λ_f Füllungsgrad
- λ_H Ausnutzungsgrad
- λ_1 Liefergrad
- ξ Schaufelverengungsfaktor
- au Evakuierungszeit
- ω Winkelgeschwindigkeit

allgemeine Indices

- 2 bezogen auf Laufradaußendurchmesser
- d Flüssigkeitsdampf
- e effektiv
- $j \dots m$ laufender Index
- max maximal
- opt optimal
- th theoretisch

Markierungen

- \sim vollkommen verlustlose Flüssigkeitsringmaschine
- \wedge Spaltweite S/b = 0
- Spaltweite $S/b = 7,2 \cdot 10^{-3}$

Experimentelle Voraussetzungen

Zur Ermittlung des Einflusses des Axialspaltes auf die Kennlinien wurde die in [5], [7] eingehend beschriebene Versuchsmaschine verwendet. Die Versuche wurden für eine Drehzahl von n = 1400 U/min ($\omega r_a = 15,76$ m/s) in

200

10 ³ S/b	[-]	1,9	3,0	4,0	5,1	6,1	7,2
		٠	-	×	0	Δ	

unmittelbarer Nähe der für Flüssigkeitsringvakuumpumpen optimalen Umfangsgeschwindigkeit durchgeführt. Die Axialspalte zwischen Läufer und Steuerscheibe sowie zwischen Läufer und Sichtscheibe sind Tabelle 1 zu entnehmen.

Liefergrad und maximal erreichbares Vakuum

Die Berechnung des Förderstromes von Flüssigkeitsringmaschinen wurde bereits ausführlich in [7] behandelt.

$$V_{S-e} = 0.5 \cdot \lambda_H \cdot \xi \cdot \omega \cdot b \cdot r_a^2 \left[\left(\frac{r_s}{r_a} \right)^2 - \left(\frac{r_i}{r_a} \right)^2 \right].$$
(1)

Hierbei ergibt sich der Ausnutzungsgrad λ_H als Produkt des Füllungsgrades λ_f und des Liefer- oder Dichtheitsgrades λ_1 .

Da eine auch nur annähernde Bestimmung von λ_f nicht möglich und der Wert nur wenig von 1 verschieden ist, soll er in den weiteren Betrachtungen gleich 1 gesetzt werden [7].

Die einzelnen im Liefergrad λ_1 enthaltenen volumetrischen Verluste sind der Übersicht wegen nochmals zusammengefaßt.

- V_{v-j} Gasförderung von der Druck- zur Saugzone durch den oberen Scheitelspalt
- V_{v-k} Überströmverluste aus einer Kammer höheren Druckes in die nachfolgende über die Schaufelspitzen hinweg
- V_{v-1} Überströmverluste aus einer Kammer höheren Druckes in die nachfolgende durch die Spalte an den Stirnseiten des Läufers
- V_{v-m} Überströmverluste durch die Spalte an den Stirnseiten von der Druckzur Saugzone
- V_{v-d} Dampfanteil im Saugraum als Funktion des Absolutdruckes und der Flüssigkeitstemperatur.

Während die mit 1 und *m* gekennzeichneten Verluste der Druckdifferenz oder Förderhöhe $\sqrt{\overline{P_D - P_S}}$ und der Spaltweite *S* proportional sind, sind die Verluste *j* und *k* vom jeweiligen Druckverhältnis bezogen auf das maximal erreichbare Druckverhältnis abhängig.

Der effektive Förderstrom bzw. der Ausnutzungsgrad können somit aus

R. PRAGER und P. BRAMER

$$\frac{V_{S-e}}{V_{S-th}} = 1 - \frac{V_{v-j}}{V_{S-th}} - \frac{V_{v-k}}{V_{S-th}} - \frac{V_{v-l}}{V_{S-th}} - \frac{V_{v-m}}{V_{S-th}} - \frac{V_{v-d}}{V_{S-th}}$$
(2)

erhalten werden.

Für die vollkommen verlustlose Flüssigkeitsringmaschine ergibt sich der Ausnutzungsgrad aus dem Dampfvolumen und dem Partialdruck der Betriebsflüssigkeit nach dem Daltonschen Gesetz. Aus Gleichung (2) wird so

$$\tilde{\lambda}_{H} = 1 - \frac{V_{v-d}}{V_{S-th}} = 1 - \frac{P_{d}}{P_{u}} \cdot \frac{1}{1-Y}$$
(3)

Abb. 1. Arbeitsraum einer Flüssigkeitsringmaschine

wenn das Vakuum wie folgt definiert wird

$$Y = 1 - \frac{P_s}{P_u} . \tag{4}$$

Das theoretisch durch eine Flüssigkeitsringmaschine maximal erreichbare Vakuum ist durch den Dampfbildungsdruck der Betriebsflüssigkeit gegeben.

$$Y_{th-\max} = 1 - \frac{P_d}{P_u} \,. \tag{4a}$$

Abb. 2 zeigt die Funktion $\tilde{\lambda}_H = f(Y)$ für eine Wasserringvakuumpumpe bei einer Wassertemperatur von 15° C und einem Umgebungsluftdruck von 750 Torr.

Für eine Spaltweite S/b = 0 wird $V_{v-1} = V_{v-m} = 0$ und somit nach (2)

$$\hat{\lambda}_{H} = 1 - \frac{V_{v-j}}{V_{S-th}} - \frac{V_{v-k}}{V_{S-th}} - \frac{V_{v-d}}{V_{S-th}} \,. \tag{5}$$

Abb. 2. Ausnutzungsgrad der Vakuumpumpe

Nach [7] wird für die mit einer Spaltweite $S/b = 1.9 \cdot 10^{-3}$ ausgeführten Flüssigkeitsringmaschinen im Arbeitsbereich als Vakuumpumpe für den Ausnutzungsgrad die Funktion

$$\lambda_{H} = (0.147 \cdot X^{3} - 1.297 \cdot X^{2} + 0.150 \cdot X + 1) \lambda_{H-\text{max}}$$
(6)

mit

$$X = \frac{P_D / P_S - 1}{(P_D / P_S)_{\max} - 1}$$
(7)

angegeben. Da in dem Liefergrad, wie bereits angeführt, das vorhandene Flüssigkeitsdampfvolumen schon enthalten ist, ist ein Gleichsetzen von (5) und (6) möglich. Mit Hilfe der Werte Y_{\max} (vergl. Abb. 2) sowie $\hat{\lambda}_{H-\max}$ nach Abb. 5 kann die Funktion $\hat{\lambda}_H = f(Y)$ aufgezeichnet werden. Hierbei ist das Überwiegen der Verlustanteile $(V_{v-j} + V_{v-k})/V_{S-th}$ gegenüber dem vorhandenen Wasserdampfvolumen offentsichtlich. Durch die Förderung des nicht vollständig aus dem Arbeitsraum durch den Druckschlitz ausgeschobenen Gases in die Saugzone der Maschine (V_{v-j}) wird mit steigendem Verdichtungsverhältnis der Liefergrad und schließlich das maximal erreichbare Vakuum gegenüber dem nach Gleichung (4a) beträchtlich abgesenkt. Im Bereich Y < 0.3 ist das Anwachsen der Überströmverluste durch die innerhalb der Maschine auftretende Überverdichtung des Gases bedingt. Nach Abb. 3 ist in diesem Bereich das sich aus den Drücken an den Stutzen der Maschine ergebende äußere Druckverhältnis geringer als das innere Druckverhältnis, das sich aus der

Abb. 3. Druckverlauf im Arbeitsraum

radialen Erstreckung des Flüssigkeitsringes unter Berücksichtigung der Schaufelteilung und der Lage der Steuerschlitze berechnen läßt (Abb. 1). Im vorliegenden Falle beträgt das innere Druckverhältnis $P'/P_S = 1,67$. Das entspricht einem Vakuum von Y' = 0,34.

Für S/b > 0 wird aus (2) mit (5) und (6)

$$\lambda_{H} = (0,147 \cdot X^{3} - 1,297 \cdot X^{2} + 0,150 \cdot X + 1) \cdot \lambda_{H-\max} - \frac{V_{v-1}}{V_{S-th}} - \frac{V_{v-m}}{V_{S-th}}.$$
(8)

Für den gesamten Spaltverlust wird somit

$$\frac{V_{v-1}}{V_{S-th}} + \frac{V_{v-m}}{V_{S-th}} = \hat{\lambda}_H - \lambda_H.$$
⁽⁹⁾

Abb. 4 zeigt diesen Spaltverlust bei einem Vakuum Y = 0 als Funktion der relativen Spaltweite. Der mit steigender Spaltweite abnehmende Gradient

 $d(\hat{\lambda}_{H-\max} - \lambda_{H-\max})/d(S/b)$ resultiert aus dem später noch eingehend behandelten Absinken des Druckgradienten im Arbeitsraum während der Verdichtungsperiode im Bereich $P_D/P_S < 1.67$.

Die Liefergradkurven nach Abb. 2 für Spaltweiten 1,9 \cdot 10⁻³ \leq S/b \leq \leq 7,2 \cdot 10⁻³ zeigen einen starken Anstieg der Lässigkeitsverluste mit dem

Druckverhältnis, was auf den Anstieg des Druckgradienten im Arbeitsraum während der Verdichtungsperiode zurückzuführen ist. Die Verdichtungslinie nach Abb. 3 verschiebt sich mit wachsendem Axialspalt immer mehr von 1-2 nach 1-7. Die für die effektive Verdichtungsleistung [7] maßgebende Fläche des Kreisprozesses 1-2-7-8-4-1 wird um die Teilfläche 1-2-7-1 vergrößert. In diesem Zusammenhang ist auch das Anwachsen der effektiven Verdichtungsleistung und der Antriebsleistung für $P_D/P_S > 1,67$ mit wachsender Spaltweite nach Bild 7 zu beachten.

Abb. 6. Isothermer Gesamtwirkungsgrad

Tritt in der Maschine Überverdichtung auf $(P_D/P_S < 1,67)$, kehren sich die Verhältnisse um. Der Grad der Überverdichtung nimmt mit wachsender Spaltweite ab. Die Fläche des Kreisprozesses verschiebt sich um die Teilfläche 1-2-5-1 immer mehr nach 1-5-6-4-1. Die Lässigkeitsverluste, die effektive Verdichtungsleistung und die Antriebsleistung sinken ab. Der Verlauf der Kurven N_e , $N_a = f(P_D/P_S)$ wird im Bereich $P_D/P_S < P'/P_S$ wesentlich durch die Drosselerscheinungen beim Ausschieben des Gases aus dem Arbeitsraum durch den Druckschlitz der Maschine bestimmt. Stimmt das innere Druckverhältnis gerade mit dem äußeren Druckverhältnis überein, wird das Gas nahezu verlustlos in den Druckraum gefördert. Ist das äußere Druckverhältnis geringer als das innere, muß das im Arbeitsraum verdichtete Gas auf den Gegendruck im Druckraum entspannt werden. Das Gas strömt in den unter niedrigerem Druck stehenden Druckraum. Der der Überverdichtung entsprechende Energieinhalt des Gases wird dort verwirbelt und in Wärme umgesetzt. Die Zustandsänderung 2-6 verläuft so wesentlich nach 2-3-6 verschoben [7]. Der Verlauf des Kreisprozesses nach 1-2-3-4-1 (obere Grenzkurve von N_e des schraffierten Bereiches nach Abb. 7) wird durch den Anstieg der Antriebsleistung in diesem Bereich sehr gut bestätigt. Weiterhin wird die Verringerung der Teilfläche 1-2-5-1 durch das Überschneiden der Antriebsleistung für $P_D/P_S < 1,67$ mit wachsender Spaltweite deutlich wiedergegeben.

Da der gesamte Druckverlauf im Arbeitsraum einer Flüssigkeitsringmaschine durch die Axialspalte wesentlich beeinflußt wird, können auch die Überströmverluste $(V_{v-i} + V_{v-k})/V_{S-th}$ nicht als unabhängig von der Spaltweite angenommen werden. Eine genauere Trennung der gesamten volumetrischen Verluste ist wegen der gegenseitigen Beeinflussung der einzelnen Verlustglieder weder theoretisch noch experimentell mit hinreichender Genauigkeit möglich.

207

Da mit steigender Spaltweite im Bereich großer Druckverhältnisse das plötzliche Einströmen von Gas aus dem Druckschlitz in den unter niedrigerem Druck stehenden Arbeitsraum verringert wird (27 nach Abb. 3), wird der Flüssigkeitsring im Bereich des Druckschlitzes weniger mit Gasblasen durchsetzt. Dadurch sinken die Überströmverluste V_{v-j}/V_{S-th} , was wiederum ein Anwachsen des Ausnutzungsgrades zur Folge hat. Dieser Effekt ist für Y > 0.72 bei den Spaltweiten $S/b \ge 5.1 \cdot 10^{-3}$ sichtbar. Das maximale Grenzvakuum von $Y_{\rm max} = 0.875$ wird so unabhängig von der Spaltweite erreicht. Eine unwesentliche Beeinflussung des maximal erreichbaren Vakuums durch Vergrößerung der Axialspalte wird auch in [8] gezeigt.

Schlußfolgerungen

Die dargelegten Ergebnisse zeigen, daß der Ausnutzungsgrad und der isotherme Gesamtwirkungsgrad von Flüssigkeitsringmaschinen in entscheidendem Maße von der Weite der Axialspalte zwischen Laufrad und den Gehäusedeckeln abhängen. Die in [7] angegebenen Beziehungen für die Abhängigkeit des Ausnutzungsgrades vom jeweiligen Druckverhältnis sowie die optimalen Arbeitsgebiete verschieben sich mit wachsender relativer Spaltweite beträchtlich. Der Gültigkeitsbereich der Angaben nach [7] beschränkt sich auf relative Spaltweiten $S/b \leq 2.0 \cdot 10^{-3}$.

Mit Hilfe der vorliegenden Ergebnisse können für auszuführendeFlüssigkeitsringmaschinen sowohl Festlegungen über die Größe der Axialspalte im Neuzustand als auch über ihre zulässige Vergrößerung bei eintretendem Verschleiß während des Betriebes getroffen werden. Für die Festlegung der zulässigen Verschleißgrenzwerte kann jedoch keine allgemeingültige Vorschrift gegeben werden, da die Frage nach einem nicht mehr wirtschaftlichen Betrieb von vielen, meist die gesamte Maschinenanlage betreffenden Problemen abhängt. Neben der Abnahme der Maximalwerte des effektiven Förderstromes und des isothermen Gesamtwirkungsgrades mit zunehmender Spaltweite ist die Abhängigkeit des effektiven Förderstromes vom Vakuum bzw. Druckverhältnis besonders zu beachten.

Bei einem Einsatz von Flüssigkeitsringmaschinen als Evakuierungseinrichtungen für Pumpenanlagen [1] bzw. als Ansaugstufen von Kraftstoffpumpen, Feuerlöschpumpen oder Schiffslenzpumpen [1], [4] ist die Evakuierungszeit von besonderer Bedeutung. Sie wird durch das zu evakuierende Volumen sowie durch die Abhängigkeit des effektiven Förderstromes vom jeweiligen Vakuum bestimmt und ergibt sich aus der thermischen Zustandsgleichung für ideale Gase. Für die Evakuierung eines Behälters mit konstantem Volumen erhält man bei isothermer Zustandsänderung

$$\tau = V \int_{P_u}^{P} \frac{1}{V_{S-e}} \cdot \frac{dP}{P}.$$
 (10)

Abb. 9 zeigt die Abhängigkeit der relativen Evakuierungszeit $\tau/\hat{\tau}$ von der Spaltweite mit dem zu erreichenden Vakuum als Parameter. Diese Zeitverhältnisse besitzen nur Gültigkeit unter der Voraussetzung gleicher Flüssigkeitsmasse im Gehäuse der Flüssigkeitsringmaschine und damit unveränderter Flüssigkeitsringgeometrie sowie gleicher Flüssigkeitstemperatur.

Abb. 9. Relative Evakuierungszeiten

Zusammenfassung

Die Weite des Axialspaltes zwischen dem Laufrad und den Gehäusedeckeln von Flüssigkeitsringmaschinen hat durch die Erhöhung der Überströmverluste aus einer Kammer höheren Druckes in die nachfolgende sowie der Überströmverluste direkt von der Druck- zu Saugzone einen erheblichen Einfluß auf die Kennlinien. Die Beeinträchtigung des Ausnutzungsgrades, des isothermen Gesamtwirkungsgrades sowie des optimalen Druckverhältnisses mit wachsender Spaltweite zwischen Laufrad und Gehäusedeckeln wird experimentell ermittelt. Weiterhin werden die Veränderung des Druckverlaufes im Arbeitsraum der Flüssigkeitsringmaschine und die Beeinflussung der Evakuierungszeit von Behältern oder Rohrleitungen behandelt.

Literatur

- 1. Autorenkollektiv. Technisches Handbuch Pumpen. VEB Verlag Technik, Berlin, 3. Auflage.
- LÜHMANN, R.: Rotierende Flüssigkeitsringgaspumpen als Vakuumpumpen und Verdichter Schweizer Maschinenmarkt 1, 11 (1962).
- 3. PFLEIDERER, C.: Die Kreiselpumpen für Flüssigkeiten und Gase. Springer-Verlag, Berlin, 1955.
- 4. POHLENZ, J.: Pumpen für Flüssigkeiten. VEB Verlag Technik, Berlin, 1970.
- 5. PRAGER, R.: Untersuchungen an Wasserringvakuumpumpen und -verdichtern. Maschinenbautechnik 11, Heft 9 (1962).
 6. PRAGER, R.: Operational Conditions and Application Field of Liquid-Ring Machines.
- PRAGER, R.: Operational Conditions and Application Field of Liquid-Ring Machines. Proceedings of the Third Conference on Fluid Mechanics and Fluid Machinery. Publishing House of the Hungarian Academy of Sciences, Budapest, 1969.
- 7. PRAGER, R.: Untersuchungen an Flüssigkeitsringvakuumpumpen und -verdichtern. Dissertation TU, Dresden, 1968.
- 8. Тетерюков, Б. И.: Ротационные вакуум-насосы и компрессоры с жидкостным поршнем. Машгиз, Москва, 1960.

Dr. Ing. R. PRAGER Dipl. Ing. P. BRAMER 402 Halle (Saale), Leninallee 90. DDR