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Introduction 

There are mauy chemical technological processes involved in the stra­
tified flow of a thin liquid layer on a great, flat plate. This phenomenon had 
first been investigated by an experimental method. 

GRIMLEY [1] considered the critical Reynolds number v.e. where waves 
appear. For various values of the Reynolds number, three intervals can be 
distinguished depending on the mean velocity and the mean film thickness. 

For Re < 30 there is a thin film flow with constant-thickness layer. 
In the interval 30 < Re < 60 capillary-gravity waves occur on the sur­

face of the film. The phase velocity to mean velocity relationship and the value 
of the critical Reynold8 number for such an apparent transition were derived 
by BINNIE [2], KIRKBRIDGE [3], and FRIEDMANN and MILLER [4J. 

For Re > 1500 the flow of the film becomes turbulent [5J. 
The first analy-tical investigation of the film flow was made by JEFF­

REYS [6]. 
LANDAU and LEWICH have taken into consideration the effect of the 

capillary forces too, in investigating the film flo'w on the surface of a rigid body 
taken out of a stratified, static fluid [7]. 

In an analysis by KAPITSA [8J the interval 30 < Re < 60 has been 
investigated in case of a N e"wtonian fluid. 

The present work is aiming at extending KAPITSA'S analysis to purely 
viscous, non-Newtonian fluids. 

Formulation of the problem 

Let us consider an infinitely long flat plate. A Cartesian co-ordinate 
system Oxyz is chosen with its origin in the plate, and the y-axis perpendicular 
to it. A thin liquid layer flows on the plane xz, in the direction of the x-axis. 

Our assumptions are as follows: 
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1. The flow is laminar. 
2. The fluiCl is a purely viscous, incompressible non-Newtonian liquid. 
3. The shear stress - shear rate relationship is of the "power-Iaw"-type. 
4. The flow is quasi-one-dimensional: 

vz = O. 

5. Although vx> Vy, Vx 8vx/8x and Vy 8vx/8y are of similar order, because 
the film is very thin. 

---- ----r:so:::::--~-

x 

Fig. 1 

6. The wave-length is greater than the mean thickness of the film: 

7. The waves are not decaying. The decrease of the potential energy of 
the film is equal to the dissipation. 

8. At the surface of the film the pressure equals the capillary pressure: 

d2 0 
Pv=o = - a--

2 
• 

. dx 

9. Inside the film the pressure is not varying in y direction: 

8p = O. 
8y 

Consequently, the equations of motion and continuity are the following: 

8vx I 8vx 8vx -- - v -_ .. + Vv -'- = gx 
8t I X 8x . 8y 

'YJo 8 (8Vx) n -- --
e 8y 8y 

(1) 

2) 
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where Ps is the capillary pressure; 

1]0 is the "apparent" viscosity; 
n is the flow-behavior index. 

The total differential of Vy is: 

8v 8v 
dvy = --y dx + -y-dy. 

8x 8y 

~, 
Fig. 2 

Owing to the very small film-thickness 

8vy 8vy 
--<{--

8x 8y 
thus 

8v 
dvv = -Y-dy. 

- 8y 

When continuity is applied: 

The equation of motion in such a way is 

8vx I 8vx ---v ---
8t I x 8x (SY ~dy)~ 

8x 8y 
o 

where a is the surface tension. 
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( 1) 

(4 ) 

8 

Now we assume that the distribution of Vx equals the velocity distribu­
tion of a laminar, parallel stratified flow, which is of the same thickness as the 
wave-surface film at the given place (Fig. 2). 

In the latter case: 

(6) 
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where c is the mean velocity of the constant-thickness layer: 

Ii 

c= ~ fvxdY. o _ (7) 

o 
Solution 

Substituting (6) into (5) the equation of motion can he writtcn with the 
mean velocity: 

Averaging Eq. (8) in y-direction: 

~+(2n+1)2 2n
2
+4n+2 c ~_(2n+1)2 n(n+1) c_8_c = 

8t n + 1 6n2 + 7n + 2 8x n + 1 6n2 + 7n + 2 8x 

= gx + ~. d
3

0 _ ( 2n 1) n }k ~. 
Q dx3 n e on-,-1 

(9) 

Mter simplifications: 

~ + ( 2n + 1 ) 2 n
2 

3n + 2 c ~ = gx + ~ d
3

0 
8t n+ 1 6n2 +7n+ 2 8x e dx3 

_ ( 2n + 1 )' n !L. 0 ~. 
n Q on+! 

(10) 

The component Vy somewhere on the free surface is the following: 

80 80 
v,,=-+vx --' 
- 8t 8x 

Using (4): 
Ii 

~= - f 8vx dy-vx~' 
8t 8x 8x 

o 

After transformation, reverse the order of derivation and integration: 
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o 

~ = - 0 _8_ (~ S v dY) - v 80 
8t 8x b x x 8x • 

o 

Using the approximation Vx = e in the second term: 

80 8 
-=--(eb). 

8t 8x 
(11) 

Small-amplitude waves being concerned, the equation of free surface can be 
written as: 

(12) 

The waves are assumed non-decaying as confirmed by the experimental results 
in region 30 < Re < 60. Then rp and e are periodic functions of the variable 
(x-at). Using the identity of time and space periodicity, the time derivative 
can be traced back to space derivative: 

8b 8cp 
(13) --= -aoo 

8t 8x 
and 

8e Se 
(14) -a--. 

St 8x 

In respectively (13) and (14), a is the phase velocity of the waves. Then the 
equation of motion is: 

where IX and fJ are constants, depending on the behaviour index and viscosity. 

IX = ( 2n + 1)2 n
2 + 3n + 2 

n + 1 6n2 + 7n + 2 
(16) 

(17) 

Using (11), (12) and (13) 

(18) 

and 

(19) 
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hence: 

(20) 

After integration: 
(21) 

thus 

c = a _ a - Co 

1+1P 
(22) 

where Co is the mean velocity in the cross section determined by thickness 80-

Since IP ~ 1 in third-order magnitude 

(23) 
Derivating: 

ec elP 
- = (a - co) (1 - 21P) - • ex ex 

(24) 

Substituting (24) for (15) we the expression for IP is obtained: 

a(a - co) (1 - 21P) dIP + IX [co + (a - co) IP (a - co) 1P2] • 
dx 

. (a - co) (1 21P) dIP = gx + 00 0' d3 1P _ ~ [co (a - co) IP - (a - co) 1P2]n 
dx Q dx3 !2 0~+1 (1 + IP )n+1 

(25) 

This expression in x is a linear, third-order differential equation. It is necessary 
for non-decay, periodic solution that the coefficient of IP and the O-order terms 
is zero. 

In the first approximation: 

(26) 

Thus 

(27) 

and 

(23) 

The latter delivers the phase velocity of the waves: 
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2n 1 
(29) a = co. 

n 
The mean thickness from (27): 

1 

Go = (~Qn)2n+l 
12 gx 

(30) 

where Q = coo o' the flow rate per time. 
The non-decay, periodic solving for rp, can be derived from 

~rp I 12 ~ 
-- T -- (a - co)( a = (tco) -- - 0 • 

dx3 Go a dx 
(31) 

Assuming sinusoidal free surface: 

rp = A sin (kx - rot) • (32) 

Substituting (31) we obtain for the wave-number: 

(33) 

These are relationships for the wave number, phase velocity, the mean film 
thickness to constants ratio characterizing the fluid behaviour (a, 'YJo' n). 
It makes possible a fast checking of rheological measurements. 

The energy equation is: 

~ f(~2 +U) 12 dV= fpdiyvdV+ fvFtU-f@dV (34) 

v v (A) v 

where @ is the. function of dissipation; F is the stress tensor. 
The fluid is incompressible: 

divv = 0 
and the field is gravitational: 

U=gh. 
Mtet arranging: 

f: (~ + gh ) 12 dV + f v (V; +ghj 12 tU = f"i F tU - f@dV. (35 

V (A) (A) v 

Since the gravitational field is steady, and the free surface is sinusoidal: 

- -+gh =0. a (V2 ) 
at 2 
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The surface integrals are zero in sections AB and CD because there vdA = O. 
The velocity, and shear stress distributions are the same in sections AD and 
BC, but the directions of dA are opposite. 

Thus 

(36) 

therefore 

(37) 

A .1 
Fig. 3 

Substituting (22) and (12), the energy equation of the unit length film is: 

dx. (38) 

The decrease of potential energy is equal to the energy dissipation. 
The right side of (38) may be integrated by expanding in series the powers 

of cp, because cp <{ 1. 

(1 + ~cpr+1 
(1 + cpfn+1 

= 1 + (2n + 1) cp 

Taking (32) into consideration, after integration: 

2n2 + 3n + 1 cp2. 
n 

Q = {3 c~+1 (1 _ 2n
2 + 3n + 1 A2) 

e gx 'f/o o~. 2n . 

(39) 

(40) 
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From (40) the amplitude, is the following: 

A = 1! 2n (1 
2n2 + 3n + 1 

Consequently, from (41), if 
1 < exg b~+l 

fJ '1]0 c~ 

is no real solution, no wawes can occur at the free surface of the film. 
The boundary value of stability of the constant-thickness layer. 

eg bn+1 
1 = x 0 

{J1Joc~ • 

If the flow rate is increasing for a constant mean thickness, then: 

n (J' bn+1 1> "bX 0 

{J 1Jo c~ 

here the capillary-gravity wawes will occur on the surface of the film. 
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(41) 

(42) 

(43) 

(44) 

Similar Results obtained results may be derived for the case n = 1. Our 
expressions are in good agreement with experimental results [1], [2], [3]. 

Summary 

An approximate analysis is presented for determining the motion of capillary-gravity 
waves in thin, non-Newtonian liquid layers, flowing down on an inclined, flat plate. The equa­
tions of motion are averaged across the film thickness, after some simplifications the mean 
velocity, the phase velocity of the waves, the mean thickness of the film, the wave-number 
are obtained. At last the boundary value of the stability of the constant-thickness layer is 
obtained. Thereby a fast control of rheological measurements becomes possible. 

References 

1. GRBILEY, H.: Transaction Inst. Chem. Eng. 23, 228 (1945). 
2. BINNIE, A. M.: Journal Fluid Mechanics. 2, 551 (1957) 
3. KIRKBRIDGE, C. G.: Transactions American lnst. Chemical Engineers. 30, 170 (1933). 
4. FRIEDlIIANN, S. J.-MILLER, C. 0.: Liquid films in the viscous flow region. lnd. Chem. 33, 

885 (1941). 
5. COLBURN, A. P.: Note on the calculation of condensation when a portion of the condensate 

layer is in turbulent motion. Transcations American Inst. Chemical Engineers. 30, 
187 (1933). 

6. JEFFREYS, H.-JEFFREYS, B. S.: Methods of Mathematical Physics. p. 266. Cambridge, 
1946. 

7. LANDAu-LEWIcH: Acta Physicochimica URSS. 17, 42 (1942). 
8. KAPITSA, P. L.: Wave motion of a thin layer of a viscous liquid. Journal Experimental and 

Theoretical Physics, USSR. 1 (1948). 

Dr. Elemer BOBOK, Technical University for Heavy Industry, Miskolc, 
Hungary 




