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Introduction

The study of the laminar boundary layer is very important from the point
of heat and mass transfer. The increasing importance of Non-Newtonian fluids
in the chemical and process industry has directed the attention to transfer
phenomena in this sort of fluids. To solve transport equations involves generally
many difficulties; even no exact solution may be obtained. The same problems
arise for Non-Newtonian fluids, with a non-linear relationship between shear
stress and deformation rate. Approximation methods have become generalized.
Some of them are based upon the transformation of partial differential equa-
tions into integral equations applying neglects [1]. The involved error much
depends on the type of the chosen function, generally a polynomial describing
the change of the intensive quantity according to place.

Now examine the influence of the changing degree of the polynomial on
the error of the solution, in case of two-dimensional laminar boundary layer
flow of a Non-Newtonian fluid. The rheology of the fluid will be characterized
by the power-law.

Karman—Pohlhausen method

In a rectangular co-ordinate system, according to the boundary layer
theory, the following equations arise for two-dimensional laminar boundary
layer flow:

for the momentum transfer:

du du

Ty 1
, dx Oy i W

for the heat transfer:

for the mass transfer:
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U— f oy = D", (3)

These equations will be solved by the Kdrméan-—Pohlhausen’s method.
In case of a flow over a solid flat surface the integral forms of these equations
are (assuming the velocity caused by mass transfer in y direction can be neg-

lected):
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To solve these equations, variations of velocity u, temperature T and
concentration ¢ will be approximated by a polynomial

F= > 7' (7)

F=—" and =2, (8)

The coefficients of this polynomial of m-th degree can be determined from
the boundary conditions, resulting either from physical considerations and
experimental work or from mathematical considerations.

Increasing the degree of the polynomial hence the number of boundary
conditions is expected to yield more correct results.

Ojha [2] examined six different boundary conditions to test polynomials
of various degrees and compared the revelant numerical results with the exaet
solution for a Newtonian fluid. A higher degree appeared not to give better
results in every case.

Below we shall use the same boundary conditions (Table 1) facilitating
to determine the coefficients of the polynomials.

As the first step let us study the momentum transfer.
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Momentum transfer

Determination of the resistance coefficient will be illustrated on the poly-
nomial 6 P;. The cipher 6 means the degree of the polynomial the subscript 3
the number of the wall boundary conditions.

The rheological property of the fluid can be described as:

Su "

(Txy)y=0 =K ( (9)
\ 8}’ y=0
and the velocity profil:

6
Fi)= S 7', (10)

i==1

According to Table 1:

F(n) = 20 — 57 + 677 — 21°. (11)

Considering (8) and (9), the integral equation for the momentum transfer:

Ul
o

2"K

2 3 1
=Umgva—x—J(1—F)F6(x)dn. (12)

Substituting (11) into (12) and integrating we get an ordinary differential
equation:

on 0 _gn K 9009 15 (13)
dx o 985
solving this for boundary condition
85(0) =0 (14)

yields relationship of momentum boundary layer thickness and the place:

(13)

H(n+1)
09 =27 n - =g S

985 o

Hence, the resistance coefficient:

(Tay)ymo 985 |, 985 2 quemy
E(x) == XY Re~1intl) 16
(=) UZp 9009 (x) 9009 n-t1 (16)
where
] 211
Re — 2% U= 17)
K

Introducing notation:
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we get for the polynomial 6P;:

o(n) = (9;85_ 2 r/(n . (19)
9009 n+1
Table 2
Polyuomial .

3P, 4P, 5P, 4P, | 5P 6P, Esact
0.1 0.859842 | 0.869057 @ 0.874785 | 0.852836 | 0.859154 @ 0.863412 0.9853
0.2 0.747256 | 0.762003 = 0.771236 | 0.736131 | 0.746160 | 0.753353 0.8712
0.3 0.655816 | 0.673804 | 0.685134 | 0.642336 | 0.654485 | 0.668749 0.75717
0.4 0.580715 | 0.600499 | 0.613026 | 0.565973 | 0.579256 | 0.588325 0.6592
0.5 0.518365 | 0.539026 @ 0.552168 ' 0.503045 | 0.516846 | 0.526299 0.577
0.6 0.466073 | 0.487024 | 0.500402 & 0.450606 | 0.464537 | 0.474107 0.5090
0.7 0.421802 | 0.442667 | 0.456036 | 0.406457 | 0.420276 | 0.429792 0.4526
0.8 0.383992 | 0.404534 | 0.417737 @ 0.368936 | 0.382493 | 0.391849 0.4055
0.9 0.351441 | 0.371513 | 0.384450 | 0.336774 ; 0.349979 | 0.359110 0.3658
1.0 0.323209 | 0.324725 : 0.355355 | 0.306987 | 0.321790 | 0.330659 0.3321
1.1 0.298557 | 0.317469 | 0.329716 | 0.284809 | 0.297183 | 0.305769 0.3030
1.2 0.276894 | 0.295182 | 0.307050  0.263630 | 0.275568 ; 0.283863 0.2778
1.3 0.257748 | 0.275409 ; 0.286891 = 0.244965 | 0.256469 | 0.264474 0.2558
14 0.240737 | 0.257779 | 0.268878 = 0.228424 | 0.239504 @ 0.247222 0.2363
1.5 0.225546 | 0.241985 | 0.252708  0.213689 | 0.224358 ;| 0.231798 0.219
1.6 0.211919 | 0.227775 | 0.238133 | 0.200501 | 0.210774 | 0.217946 | 0.2036
1.7 0.199642 | 0.214938 | 0.224944 @ 0.188643 | 0.198538 | 0.205453 0.1897
1.8 0.188537 | 0.203298 | 0.212965  0.177939 | 0.187473 | 0.194143 0.177
1.9 0.178456 | 0.192706 | 0.202049  0.168237 | 0.177430 | 0.183865 0.1661
2.0 0.169272 | 0.183035 | 0.192068 @ 0.159414 | 0.168281 | 0.174493 0.1561

In case of the other polynomials the ¢(n) values and the values of the exact
solution [3] are compiled in Table 2. Approximation closeness by each poly-
nomial:

I" vs. polynomial degree is plotted in Fig. 1. In fact, the increase of the degree
appears not to mean unequivocally an improvement, although the least error
occurred for 6P;.

¢(n) values delivered by polynomial 6 P; and the exact solution, respec-
tively, are shown in Fig. 2.

5 Periodica Polytechnica M. 17/3.
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A fair approximation appears in the range 0.2 < n < 2.0. The curves
of the velocity profil will be plotted for the exact and the 6P, solution, for sake
of comparison,
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Heat and mass transfer

By analogy between heat and mass transfer, the following symbels will
be introduced:

o T for heat transfer

¢ for mass transfer

(20.a)
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. |a for heat transfer
- {D for mass transfer (20.b)
|6 for heat transfer
bz = {(SC for mass transfer (20-¢)
and
H ——— 'HO y
= ——"2 and = 20.d
7, iy (20.d)

Using these symbols, Eqs (2) and (3) become

8H 8H 3 H
u L =2
dx dy oy

and in integral form:

5%
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1

ULSad) [ —mFmoin =2 ( o ] . (21)
0

L 97,

The procedure of the calculation is illustrated again on 6P;. The concentration
and the temperature profil are approximated by polynomial:

6
a(nz) = 3 Bitla- .
[==0
The same boundary conditions can be used for n as for u/U_
(1) = 21, — 50 + 6 — 2. (22)

Introducing symbol:

A=
s

becomes:
o4 5 45 6 A6 :

Substituting (22) and (23) into (21) and integrating we get:

= A fote) [ — e s — )|
U dx 42 99 717 8008
Supposing Az < 1, and neglecting higher — degree terms
Az oo amor g =84 2 (24)
5 U
Considering (15):
5 2/n+1)
A2 4 on 1)z dl — B [ AL 1 e
5 9009 2"(n-+-1) il

where
U&xRe—2/(n+l)
- ) ’

A

The homogeneous part of the inhomogeneous differential equation (25), intro-
ducing 43 = p(x):

¢+ —(n+1)zp’ =0. (26)

w o

The solution of the homogeneous equation is looked for in form:

Pp == €% .
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Substitating this into (26),"the homogeneous solution is

— —-32(n+1
Pp = O % (1),

Looking for a particular solution of the inhomogeneous equation of the form
pp = cpa”

and substituting into (25) we obtain:

P4

c,_,xP[1_;- ;?)—(n—:-l) P]

84 985 1 %(n+1) 1
= — (n+1) - -

5 9009 2" (n-+1) A
Since

A = [A]x0-nitsn)

where [4] is a part of A and independent of x,

P n—1
n-+1
and
84 [ 985 1 An+1) ]
(n-+1) - —
o — 5 9009 2"(n--1) [4]
g =
2
1+ "-(n—1
3 ( )
The general solution:
=@, + Pp
hence
p(x) = ¢, o aln=Diln+1) 27

The constant ¢, can be calculated from the boundary condition:

O(xg) =0 ie. g(x) =0

Thus . v
‘ ' 3/2(n-+1)
, A Ay \ =
where .
¢’(n) = cy(n)[4]
and
Ay = Axgl””)’(“““)
since )

p(x) = 45
The solution of (25): ‘ :
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’(n\1/3 3/2n+1) 113
Aﬂ:f_(_'l)_._ 1A (m) i (28)
A3 A, | =
Introducing symbols:
« heat transfer
3
k mass transfer
0 — Ay heat transfer
" |D mass transfer
The heat or mass flux at the boundary can be expressed as
AH . —Hy) =0 (9:'3{-]
By Jo
hence
2] ox
YIS S i
dmofz) | By )
Using 6 P;:
[875) _9
3y Jo
Counsidering (15) and (28):
, 173 Relfn+1)
n=—cn) A o R 29)
[ Ag | = }
where
2 9009 J—1n+1)
c*n) = —— {97(p L1 .
AT [ T }
Using the symbol:
xx
0= ——
(0]
(29) can be written in dimensionless form
113 R eli(n+1)
o = o*(n) — LR (30)

[l——/i—(fleﬂ(n+l)llls .
Ag \ x

If the starting point of the momentum boundary layer coincides with
the starting point of the heat and concentration boundary layer, (30) re-

duces into:
o = c*(n)A'? Re/* D | (31)

Values of ¢*(n) delivered by the exact solution [4] and by various degree poly-
nomials are compiled in Table 3. Deviations are plotted in Fig. 4.




Table 3

3P,

4P,

5P,

4P,

5P,

6P,

Exact

0.262429184
0.273181794
0.282815714
0.291544098
0.299518527
0.306852179
0.313632729
0.319930043
0.325801040
0.331292914
0.336445360
0.341292158
0.345862342
0.350181077
0.354270335
0.358149422
0.361835397
0.365343410
0.368686978
0.371878208

0.287765580
0.298670637
0.308429710
0.317266532
0.325338448
0.332761937
0.339626640
0.346003647
0.351950664
0.357515417
0.362737969
0.367652370
0.372287861
0.376669767
0.380820195
0.384758561
0.388502024
0.392065822
0.395463549
0.398707387

0.305102927
0.316087657
0.325912206
0.334806506
0.342931094
0.350404144
0.357316224
0.363738936
0.369730282
0.375381153
0.380602712
0.385558071
0.390233510
0.394654386
0.398842828
0.402818276
0.406597909
0.410196984
0.413629120
0.416906517

0.244522408
0.255120473
0.264625851
0.273242876
0281118029
0.288361372
0.295058579
0.301278172
0.307076135
0.312498983
0.317585899
0.322370271
0.326880819
0.331142452
0.335176931
0.339003380
0.342638703
0.346097915
0.349394413
0.352540196

0.259957141
0.270668626
0.280266631
0.288962929
0.296908241
0.304215174
0.310871000
0.317245290
0.323094740
0.328566366
0.333699721
0.338528466
0.343081537
0.347384015
0.351457798
0.355322129
0.358994012
0.362488547
0.365819207
0.368998060

0.271143404
0.281928431
0.291586730
0.300335027
0.308326794
0.315676245
0.322471636
0.328783164
0.334667940
0.340173265
0.345338896
0.350198648
0.354781571
0.359112840
0.363214429
0.367105645
0.370803547
0.374323284
0.377678372
0.380880919

0.418679955
0.357467377
0.336427390
0.328312079
0.325952633
0.326505654
0.328624315
0.331604828
0.335040718
0.338722790
0.342422797
0.346118088
0.349753621
0.353242693
0.356612361
0.359869513
0.362965420
0.365984726
0.368892180
0.371741551

NON YVNIKFT
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The values of ¢(n) given by the closest polynomial and by the exact
solution vs. n:are shown in Fig. 5. 6 P; seems to give a close approximation in
the range 0.6 < n < 2.0.
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The results show the practical applicability of 6 P; for both the momentum
transfer and the heat and mass transfer, and the deviation from the exact
solution to be negligible.
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Summary

Development of relationships for heat, mass and momentum transfer and the distri-
bution of the intensive quantity for a two-dimensional laminar boundary layer of Non-
Newtonian flow has been examined as approximated by various degree polynomials.

Comparison of the coefficients of dimensionless equations showed a basic influence of
the changing degree of polynomial on the error of the solution. The increase of the polynomial
degree appeared not to unambiguously reduce the error. The approximation by a polynomial
appeared practically satisfactory in a certain range of the index of the power law model.

Notations
a m?/s thermal conductivity coefficient
¢ kgfm3 concentration
¢ constant
Co constant
c(n) def. (18)
c* def. (29a)
i summing index
k mfs mass transfer coefficient
n index of the power law model
[ mfs velocity
v m/s velocity
x m co-ordinate
¥ m co-ordinate
D ms diffusivity
F symbol of function
K  kg/ms*~7 rtheological parameter
T K° temperature
o kcal/m*h°K grad heat transfer coefficient
o, B coefficient
0 m thickness of the momentum boundary layer
0 m thickness of the thermal boundary layer
8, m thickness of the concentrate boundary layer
n dimensionless co-ordinate
A keal/m h°K grad heat conductivity
& resistance coefficient
0 kg/m? density
T kg/m s* shear stress
® symbol of function
Re Reynolds-number def. 17.
Index
0 value fory = 0
oo value for y = 67 ,
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