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The accuracy of measuring instrument mechanisms can be improved, 
on the one hand, by reducing production technological deficiencies, by improv­
ing operational and functional circumstances, on the other hand, by reducing 
the errors involved in the so-called theoretical mechanisms which are free of 
production and operational deficiencies. Since the reduction of production 
defects requires a more precise production process, possibly an expensive 
machinery, we have to make efforts to elaborate and to apply methods likely 
of help in determining the mechanism with the minimum theoretical error. 

The scope of the accuracy synthesis for measuring instrument mecbanisms 
(mechanical systems) includes 

kinematic accuracy synthesis and 
geometric accuracy synthesis. 
The kinematic accuracy synthesis is wanted to select the elements and 

assemblies to be used and to determine their most advantageous arrangement. 
The geometric accuracy synthesis has to offer a rational method for 

determining optimum parameters of the mechanism likely to minimize the 
error of the theoretical mechanism (to the permitted value). 

The problems of geometric accuracy synthesis are mostly soh-ed by using 
one of the analytical methods of 

interpolation, 
method of least squares, or 
cqually "optimum" approximation. 
The principle of the intelpolation method is to approximate the theoretical 

function F(x) by the polynomial P(x) and to determine optimum parameters 
from the system of equations written for the equalities of ordinates F(x) = P(x) 
(Fig. 1). 

In the method of least squares the sum of squares of deviations from the 
theoretical function F(x) is minimum (Fig. 2) 
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This condition is satisfied by the Legendre polynomial: 

1 dk 

P k (x) = -- - (x2 - l)k • 
2k • k! dxl' ' 
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In accuracy calculations it is usual to employ the not normalized form of 
Legendre polynomials. 
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The essential of the method of equally "optimum" approxima#l)n is that 
the value of the maximum deviation of the approximation polynomial P(x) 
from the theoretical (specified) function F(x) is minimum, i.p: 

.1m3x = max JP(x) - F(x)/ = min. 
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This approximation is called equally close because the deviation of P(x) from 
F(x) is in the range ±E (Fig. 3). 

This condition is satisfied by the Tchebysheff polynomial: 

Tn(x) = cos (n arc cos x). 
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It is advisable to employ the not normalized Tchebysheff polynomials 
in accuracy calculations. 

To(x) = I 

T1(x) = X 
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The selection between the mentioned analytical methods depends on the 
problem to be handled. 

Careful selection of the interpolation method should be pointed out, else 
the approximation polynomial P(x) may cause rough deviations bet,'..-een the 
interpolation points. 

In designing the mechanisms of high precision measuring instruments 
the use of the equally "optimum" approximation method can be recommended 
since it leads to the minimum of deviation between the approximative and the 
theoretical polynomial P{x) and F(x), respectively. 

In applying the method of equally «optimum" approximation, the 
algorithm of solving the accuracy synthesis problem is the following. 

3* 
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Fig. 4 

1. Writing the error function of the tested theoretical mechanism: 

Ll(x) = P(x) - F(x). 

2. Expanding the error function in power series up to the power satisfy­
ing accuracy requirements (practically the fifth or seventh power). 

3. Transformation into the range (-1, 1). 
4. Equalizing the coefficients of the variable to the corresponding coeffi­

cients of the Tchebysheff polynomials. 
5. Determination of optimum parameters (for the specified requirement) 

from condition. 
It should be noted that this algorithm is also valid to the sense, for the 

Legendre polynomial with the least square deyiation. 
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Let us select the most frequently used four plane and four spatial mecha­
nisms of measuring instruments. The selection shown in Fig. 4 is arbitrary 
though advisable since these mechanisms are frequently applied e.g. in dial 
gauge type length measuring instruments [3]. In the design of measuring 
instrument mechanisms, we have to choose among many arrangement pos­
sibilities. 

'111,' , , 

Fig. 5 

Im:erting a sme or tangent input before the 8 mechanisms shown in 
Fig. 4 produce 16 mechanisms. 

By combining the 8 mechanisms III every possible yariant we obtain 

yarious mechanisms. Inserting a sine or tangent mechanisms before each 128 
arrangements are to be examined. 

Obyiously the infinity of kinematic yariaties obtained by further in­
creasing the number of mechanisms shown in Fig. 4, conyerting angular dis­
placement to angular displacement would be inhibitive for the selection of 
the most fayourable mechanism. 

As an example, let us insert a sine mechanism before the mechanism 
No. 1 in Fig. 4 (see Fig. 5). The tram:fer function of the mechanism is 

(1) 

Coupling another mechanism, e.g. that No.3 behind the mechanism shown 
in Fig. 5, the transfer function of the resulting mechanism (Fig. 6) is: 
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Beyond the difficulties ansmg in testing great many complicated transfer 
functions, another problem is that of designing for specified error functions. 

Measuring instruments may be subject to various accuracy specifica­
tions. Let us examine some common error functions. 

Fig. 8 

In the case of pressure and electric meters the class of accuracy of the 
instrument is specified in percentage error related to full scale deviation, the 
error equation of the instrument (Fig. 7) being 

h = -'-E (3) 

where E is the specified error limit. 
Systematic errors of instruments are frequently specified - on account 

of inaccuracies in the mechanism, as a function of deviation (Fig. 8): 

(4) 

where x is the input signal (e.g. displacement, angular displacement, etc.). 
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If the measuring instrument has a zero error, the error equation IS 

(Fig. 9): 

(5) 

In the case of certain force and torque measuring instruments the error 
equation is given in the form (Fig. 10): 

h = : {E3 for xc· XmaX 

m3 . x for c· Xmax < x < Xmax • 

This means that up to e.g. c = 1/5 of the upper limit Xmax of the measuring 
range the error is E 3, constant above this limit the error is proportional to the 
deviation. 

If the measuring range is symmetrical about the zero point the error 
functions are of the character shown in Fig. 10. 

Increasing requirements for measuring instruments may involve error 
functions differing from the above. 

On the basis of the aforesaid the described analytical methods of accuracy 
synthesis may involve the following difficulties: 
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a) Great many relatively complicated mechanisms and functions are 
possible. In our case the mechanism best suited to specifications should be 
selected from 16 mechanisms characterized by equations type (1) and from 
128 mechanisms 'with equations type (2). This number may further increase, 
of course, by 'widening the range of mechanisms shown in Fig. 4. 

b) Functions type (1) or (2) should be expanded in Taylor series up to 
the fifth or seventh (in some cases even higher) power of the variables. 

c) TcheLysheff polynomials only permit the determination of optimum 
parameters resulting in minimum error. No determination of optimum pa­
rameters for other modifications (of engineering accuracy) is possible. 

d) Attempts were made to determine parameters satisfying the propor­
tional error function by using a suitable weighting function with the Tcheby­
sheff polynomials [3]. 

No deductive calculation method determine optimum parameters satis­
fying a specified, arbitrary error function, likely to facilitate the 'work of 
designers is available, a timely problem. 

Thus, the described analytical methods for accuracy synthesis are tedious, 
time and labour consuming on account of the complexity and high number of 
functions, inadequate for a rational design for prescribed error functions. 

Thus, a method, likely to permit rational determination of optimum 
parameters so as to satisfy the specified error functions, has to be elaborated. 

Our measuring instruments are required to have a possibly wide measur­
ing range, involving a possibly minimum measurement error (specified value). 
In most practical cases these two conditions result in contradictory design 
requirements. 

Hence in the course of the accuracy synthesis of instrument mechanisms 
we have to establish in which measuring range (up to "\\-hich input signal) the 
mechanism error is lower than the specified error, or 'what are the parameters 
for which the error of the theoretical mechanism is at a minimum. 

For the above problem a computer method has been developed. The 
algorithm of the solution is the following. 

1. Write the transfer function (r of the theoretical mechanism. 
2. Compose the error function of the theoretical mechanism, 

DJ! = (r - re 

where rp is the transfer function of the theoretical mechanism, 
(pe is the prescribed scale function. 

3. Compare error function By with the specified error function (Figs 7, 8, 
9 and 10). 

A possible way of comparing error function Dy of the theoretical instru-
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ment mechanism with the specified error function is represented by a section 

of the flow chart in Fig. 11. 
Error function Dy is determined for each theoretical mechanism, then 

at the first loo-ical condition from amono- the error functions shown in Figs 7, o 0 

8- no 

D == Dy 

Xm:= i 

print 

Xm;B,D 

Fig. 11 

prt'nt 

Xo, B, Db' 

8, 9 and 10 the desired error limit gets active in place of h in the right-hand 
side of the inequality. 

If the error function exceeds the specified error limit within the measuring 
range, then the maximum input value Xo (above limit K) "where the error is 
lower than the specified value, that is, up to which the examined mechanism 
can be used, will he output. 

If the first logical condition is frustrated, i.e. the error of the measuring 
instrument does not exceed the specified error limit within the measuring 
range, then the maximum error value D within the range "will be found and 
printed out, together with the corresponding abscissa Xm and the optimum 
parameter yalue B. 
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Accordingly, the described computer method of accuracy synthesis per­
mits the determination of the optimum parameters of measuring instrument 
mechanisms in a deductive way, namely from the specified (arbitrary) error 
function. 

The described method was elaborated for solving problems arising in 
the accuracy synthesis of lever and rod type instrument mechanisms shown 
in Fig. 4. 

Actual examinations aim at finding the validity conditions of the above 
method for the accuracy synthesis of other, mixed systems (e.g. mechanical­
pneumatic, electromechanical, etc.). 

Summary 

The problems of geometric accuracy synthesis of measuring instrument mechanisms 
are mostly solved by using onc of the analytical methods, interpolation, method of least 
squares, and equally "optimum" approximation. 

These analytical methods are rather tedious, time and labour consuming accuracy 
synthesis on account of the complexity and high number of functions, permitting no rational 
design for prescribed error functions. 

The presented algorithm lends itself to find the optimum parameters for various func­
tional requirements such as signal transfer function and error restriction (error function). 
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