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EXAMINATION OF SHOCK WAVES
IN A BAR PRESTRESSED TO PLASTICITY
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A) Exerting additional tension on a prismatic bar which is prestressed
into the plastic range in such a way as to cause a discontinuity along one or
several lines in the velocity field resulting from loading, velocity waves or in
other words shock waves will arise in the bar. Similarly, if the acceleration
range suffers a discontinuity along one or several lines, an acceleration wave
develops.

When studying the velocity and acceleration waves produced in a pris-
matic bar, generally an axial stress condition is assumed. In what follows, we
shall set out from this assumption.

For the examination of the acceleration and velocity waves the con-
stitutive equation describing the mechanical behaviour of the bar material
under dynamic plastic load is wanted.

A constitutive equation may assume the form:

where @(0‘, 2 €0 €4 &y ) = *Gf'LEG El 0(‘S {c [G (61) ~~9€0]——'05 (1)
o stress arising in the bar cross-section;
o: derivative by time of the siress;
e  specific strain along the bhar axis;
e and ey  derivatives by time of the specific strain and of that along the
bar respectively:
E  Young modulus (modulus of elasticity);
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g(ex) is an even function and

do
g0)=1, —= =0
Exlo
Finally,
oy =, sign g, &30
and o = 2,3 & =

This constitutive equation can be established by examining the accelera-
tion wave under the following conditions [1]:
1. the bar material is isotropic and homogeneous:

2. the constitutive equation is a function of the type o; = ¢(0, &, &1, &):
3. the propagation velocity of the acceleration wave is finite and non-
zero;

4. there are forward and return going acceleration waves;

/' D,
5. if &; — 0 then the propagation velocity of the wave is — |/ H
@
. . . L E
6. if ¢ — oo then the propagation velocity of the wave is — |/ —3
0

where
o density of the bar material.

B) Let us connect the coordinate axis x to the bar axis in such a way
that the x = 0 coordinate should be ordered to the one and the coordinate
x = | to the other end of the bar (Fig. 1).

Let the constitutive equation of the shock wave front be

plx, ) =0 or x = x(t),
designated also as
y=xt) —x =10
L et us plot the function
$lt) = 0

in the coordinate system x,t (Fig. 2). y divides the quadrant x >0, ¢t >0
into two parts with the mechanical quantities ahead of the wave front pertain-
ing to part 1, those behind the wave front to part 2. In case of a shock wave,
the values of the velocity v, the specific elongation ¢ and the stress ¢ will
abruptly change beyond the curve p(x, t) = 0.

For instance, be the velocity v, and v, at the side of y facing the range
1 and 2 resp., then the velocity jump along ¢ will be v, — v;. This jump is desig-

nated by [v], viz.:

[v] = vy — 1,
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In case of such discontinuity in a function f along y, in its derivatives by
x and t the following kinematie conditions will hold for the dlscontmmtles

q MLPQFMLm%wm:

8 | Bt
[f\] - ’f’/)\‘r ‘_m‘
and
S) .
i) = 2y L (2)
ot
X=t
x" t { LP(x,t):O
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Fig. 1 Fig. 2

Accordingly, the kinematic conditions can be written down also for v,
¢ and ¢ in the following manner:

[b\] = ;’z' y)x“:‘ M

Ox
[M:4%+%%
kd:¢%+%§, o
(o] = 2w+ b
[0.] =4, p—~ azgz]
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Making use of (2) and (2a) the derivate forms of the equations of motion
and of compatibility along y = 0 will take the following form:

v 3
Q;'l‘ 1/'1 +‘) [b] — ;'o‘ Z/)Y—!— [U] (3)
ot ’ Bx
and A
i 8[v] _, 0[]
A Pt == APyt ——— 4
’ w‘ ax Ipi at ( )

The quantities [v], [¢] and [¢] are associated by kinematic and dynamic
conditions also along the curve p(x, t) = 0.

The kinematic condition stems from the displacement u being a contin-
uous function beyond i, i.e. [u] = 0. From u we get v and ¢ by derivation:

du du
V== £ = e

Bt Ox

Making use of (2):

From the two equations

[0] = 24-e]
Y

3
or, introducing the symbol ¢ = - He
W
[v] = — ¢[e] (5)
.. . dx .
As it is obvious from the form v =x(t)—x, ¢ :—d—-—, i.e. ¢ repre-
t

sents the wave rate.

To write down the dynamic condition, take a bar stretch a'x” which
contains the wave front x(z) (Fig. 1) and write down the relevant equation of
motion [3, 4]:

3

d X
— J pvdx = ¢"—0o'
dt

x*
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Or else, taking into consideration that x' < x(f) <=«
the limit transitions &’ — x() and x” — x(t) we obtain:

and performing

0Cv; — 0CU, == 0y~ 0y
viz.

oe[v] = —I[o] | (6)

i.e., the dynamic condition thought for.

Let us complement Eqs (3) to (6) with the constitutive equation in form
(1) which holds along y. Again, Eqs (2a) will be applied, however, with the
proviso that the o4, &, &, €, values ahead of the wave front are known and

6[o]

they fulfil the constitutive equation. So do the values 0;, = oAy 4

ot
&y, €25 and &y, behind the wave front:
. dfo
D o+, 9+ L] . erels
ot
. dfe e
enqtA - ~[—]~ Egq A Pt o] ) _ 0 (7)

ot 1 x|

If 2 2o 26, [v], [€] and [o] are known and fulfil Eqs (3) to (6), then
Eq. (7) will be a non-linear partial differential equation of the first order with
respect to function yp(x, ). From the equation of the characteristic curves we
have:

dx _ ﬁ_&f_e__: (8)
di Dy 2o +Dy A,

the rate of the shock wave.
C) Taking into consideration (3), (4), (5), (6) and

P
P
Py
we may write down that
. ofv
. 04y c+0 [, ]
fo . Ot
V. P o]
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being derivatives of [v] and [z], resp., along the curve

LORNS
i, ot
w(x, t) = 0. Thereby (8) becomes:

= @své (8a)
o, c+0 E:]
£
D, 0 — +O,
Lo ol
'l'-T- 6T
olel
e L] S . -
Introducing symbols ky = —— and k; = and using Eq. (5) to

bl r
eliminate [v], after appropriate reduction on (8) the derivative by time
of the velocity of wave will be:

o(1—Fky) Do, A+ (14+ky) Dy c— (1 +F,) De,
oky Dy, *

(9)

yielding for ¢ a common non-linear differential equation has been obtained’

D) The differential equation (9) will only have a resolution if the right
hand side is continuous and limited (the Peano premise) in the rang®
0 < x<Il; t> 0. This means that the acceleration of the wave front ¢ mus
be a finite value. If k; == 0 and @, 5= 0, this will at the same time mean the
fulfilment of condition (3), item A.

Accordingly, functions @, = —1, @, = EGi(&:) -+ Dy()Gi(e1)g(ex) and
D, = Dy(e)g'(ex) {Gz(!;‘() — oc}';} are continuous and limited, thereby also func-
tions Dy, G{, Gy, G5, g, g’ must be continuous and limited.

The fulfilment of condition (4), item A, depends, however, also on func-
tions k, and k,. Without putting constraints on them or without their experi-
mental determination, no further limitation can be made for the constitutive
equation 9.

Summary

Analysing the acceleration wave in a prismatic bar prestressed into the plastic range,
the constitutive equation may assume the form:

0t = EGy(er) + Do(e){g(e)[Guoler) — o] + =} -

The velocity wave in the bar may be analysed by this expression as well. To keep the velocity
of the first front of the velocity wave finite, the functions and their first derivatives in the
equation have to be continuous and limited.
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