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1. Introduction. The problem

Parametrically excited vibrations are those where one or more character-
istics of the vibrating system are specified, usually as a periodical function
of time. The differential equation (or system of differential equations) describ-
ing the problem has usually periodical, variable coefficients.

It is a well-known fact that the examination of the torsional vibration
of an internal combustion piston vehicle engine’s crankshaft would require
to take such an exact model. From practical purposes, however, it is sufficient
to substitute somehow averaged constant coefficients for the variable ones.

The motion of selective gears, other important part of a vehicle, is also
such a parametrically excited vibration. Examination of this is especially
important from the view-point of noise reduction. Recent methods, however,
refrain from the substitution of constant coefficients for the variable ones.

Treating the motion of the whole vehicle, the chassis and the whole
engine are usually treated as one rigid body, and the observed transient and
steady state motion properties closely agree with the results of the simplified
calculation. This model is hard to apply for noises arising in or around the
passenger cabin. This provblem is, however, of importance from the aspect of
preserving or even extending marketableness of our buses by improving travel
comfort.

With a view to rationalize noise reduction, equations may be derived
by means of the more complicated model, and a solution method developed
for them.

A solution of the problem is possible by observing the motion of the main
parts of an engine’s driving system relative to the engine case and elastic
properties of the suspension. This is a problem of parametrically excited vibra-
tions in connection with a motion-problem of the whole body of a vehicle.

* Delivered at the Conference of Engineering Applied Mechanics arranged by the
Scientific Society of Mechanical Engineers, Gy8r. November 1214, 1969.
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2. Scope. Choice of model

For a bus in urban traffic a most frequent speed is no-load speed. The
noise in the passenger cabin of such a bus is mostly due to the operation of
the engine rather than to the joltiness of the road. Below, the vibrations caused
by the engine of a bus in no-load run will be examined. The results are, however,
valid for all and not only for no-load speeds. Model of the engine and its sus-
pension is quite different from those made so far. Therefore, no equations
referring to the usual modelled part will be quoted.

a)System

oy v/

Rz
~AWAL i Chassis+ body

Front axie

Rear axle
Fig. 1

The model of engine and its suspension consists of the engine case fixed
to the chassis at three points by means of rubber springs R, R,, R;. Rubber
springs, assumed to be linearly elastic, are linking both the chassis and the
engine case: the force systems at these points, due to rubber springs, are equi-
valent to a force vector each. Three spring constants are assigned to every
rubber spring in three mutually perpendicular directions.

For the sake of illustration three springs are substituted for each rubber
spring in our model (Fig. 1). This does not influence our previous assumption,
that one rubber spring links the chassis at one point.

The engine consists of the following rigid parts:

a) engine case,
b) crankshaft with balance,
¢) connecting rods,

d) pistons.

The angular velocity 2 = O(r) of the erankshaft relative to the engine
case is considered as an empirically known function of time. Theoretically it
would be possible to derive and to solve such equations to obtain Q. But this
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would require the knowledge of the explosion forces and the frictional forces
generated by the moving parts as a function of the crank angle. At present,
these forces are not satisfactorily known, therefore equations exempt of these
forces should be derived. Thereby Q cannot be calculated and has to be deter-
mined by way of measurements.

This procedure involves a further problem. Namely, the influence of
variations of some certain, practically variable, parameters of the engine on
the developing vibrations is sought for. In the calculations below, the measured
0 relative to the engine of some given parameters is allowed to be used only
if wvariations of the examined parameters can be proved mnot to
considerably influence Q.

Fig. 1 shows the model of the whole engine not discussed here: the engine
is only pictured as a parallelepiped.

Fig. 2 shows a more detailed model of a six-cylinder in-line engine con-
sisting of the previously specified parts.

3. Frame of references and notations

The frame of references and co-ordinates of some specific points as well
as the notations are seen in Fig. 2.

3151 ;—3 b) System
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1. Co-ordinaie systems

a) ‘“Absolute” system. Its origin is the rest position A of the mass-centre
S; of the engine case. Directions of axes: x-axis is longitudinal, y-axis is trans-
versal, s-axis is vertical. They make a right-handed rco-ordinate system in the
order above. Unit vectors i, j, k are constant in time.

b) System linked to the engine case. Its origin is the intersection point O
of the geometric axis of the crankshaft on the plane parallel to the x, y-plane
in resting state and containing the engine case mass-centre S;. Axes in the rest
state are parallel to x-; y-; and z-axes, respectively. Unit vectors are e, e,, e;.

¢} System linked with the crankshafi. Its origin is the mass-centre Sy,
of the crankshaft supplied with balance weights. Unit vectors are f;, f; and f..
Directions of f, and e, are the same. Directions of £, and 6§f5t are also the
same; . = £, <.

d) System linked with the i-th connecting rod. Its origin is the mass-
centre S, 4; of the i-th connecting rod. Unit vectors are gg;, gy, g+ Direc-
tions of g,; and e, are the same. gy, is parallel to the centre line of the i-th
connecting rod and points toward the i-th piston pin. g, = gu; X goi-

2. Position vectors or co-ordinates of special points
That of mass-centre S; in the co-ordinate system a):
r5(¥ss Yor %) -
that of mass-centre S, in the co-ordinate system b):
Ps5t(Egs So COS %, —8, sin %), §, = constant,

that of mass-centre S, in the co-ordinate svstem b):

Prua:i( Sis by sin B, —r sin o — Iy, cos f). §; = constant, i=1,...,6,

that of mass-centre S;; of the i-th piston at the centre line of the piston pin
in the co-ordinate system b):

a2 0. —rsinz, —lcos ;) .
Distance SO = a.
Common length of the driving rods is r.
Common length of the connecting rods is L.
Eccentricity of mass-centre of the crankshaft is s,

Second co-ordinate of the point of the centre line of the i-th connecting
rod fitting to the piston pin in co-ordinate system d) is /,,.

[ai:I—"lbi'
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3. Masses

M, mass of the engine case

M, mass of the crankshaft with balance weights and flywheel
m,; mass of the i-th connecting rod

my; mass of the i-th piston

m mass of other parts of the engine.

4. Spring constants

Spring constant of the front suspension:
¢ In x direction,

¢y in y direction,

¢, in z direction.

Of the left rear suspension:

¢x» in x direction,

¢y in v direction,

¢ in z direction.

Of the right suspension:

Cx; in x direction,
¢y; in y direction,
czj in =z direction.

5. Angles and angular velocities

Angle of rotation of the crankshaft around its geometric axis is z. The
resting and the moving axes are indicated by e, and ray OS;;,, respectively.

Angle of rotation of the i-th connecting rod is x; (the resting and the
moving axes are indicated by the vector e, at the point O and the i-th connect-
ing rod, respectively).

The angular velocity of the crankshaft relative 10 the engine case is 0.

As the crankshaft is taken to be rigid, ioi = g—x—' = 0.

dt de
The angle between e, and the centre line of the i-th connecting rod is g,.
The engine is constructed so that:

2
%= (k1) S5 k=256,

The angle between vector e, at the point O and ray 6.§0 is z,, constant.
Angles of the small rotations of the engine case:

@ around x-axis,

y around y-axis,

¢ around z-axis.
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Hence its angular velocity is approximately

ws = Fi+pj+ 7k A~ By = ge,+pe,+-7e;.

6. Inertia matrices of the same parts

Inertia matrix of the engine case in the co-ordinate system b):

T Jw dw =]
Jo=|—J1s o —Ja|-
T =T Ja3

Inertia matrix of the crankshaft with halance in the co-ordinate system ¢):

¢ Jaa ~Jas _"Jac
Jl‘ét: "'Jab Jz;'g —ch
- "JCC M-]bc ‘ICC

Inertia matrix of the i-th connecting rod in the co-ordinate system d),
as the plane of its motion is the principal inertia plane belonging to the mass-
centre of the i-th connecting rod and the momentum of inertia belonging to
axis of rod direction in mass-centre is negligible with respect to the others:

d J(lﬁf 0 O
Jrudi = 0 0 0
0 0 Jcci

4. Derivation of equation of the engine motion

In the given case the synthetic method, namely, derivation of linear
momentum and angular momentum, seems to be the most advantageous.

For the sake of derivation the linear momentum and the angular momen-
tum have to be expressed with respect to an adequate point of the engine.
Both vectors are the sum of terms according to parts a). b), ¢) and d) specified
in the second paragraph.

Writing in the sum of two terms, the respective linear momenta and
angular momenta of parts b), ¢) and d), are likely to be correct. One of the two
terms in every formula can be expressed by means of the velocity field of the
part in question relative to the engine case (in the co-ordinate system b);
and the other by means of the “carrier” velocity field. The source of the latter
velocity field is the (carrying) motion of the engine case.

This calculation by means of the “relative” and the “carrier” velocity
field is proper, because the entire (absolute) velocity field of every part is
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calculated by vectorial addition of the carrier and the relative velocity field,
and both the linear momentum and the angular momentum are linear funec-
tions of the velocity fields.

According to the mentioned linear momentum of the engine (the sub-
seripts “‘rud " and “*d¢”’ referring to the i-th connecting rod and the {-th piston,
respectively): @

6
e ! i N
Imotor — Ia+1rel fét“l'Icarr 0t 2 (Irel rud § - Icarr rud 1)‘%‘
i=1
‘ (1)
6
‘ ~ |
. 2 (Irel d i‘TIcarr d i)t

I
-

i
the engine case heing denoted by subscript 6, the crankshaft with flywheel
and balance weights being denoted by subseript f8t.

Angular momentum of the engine with respect to the resting position A
of the mass-centre of the engine case:

6

J— I ! 1 4 i ]
Tmotora = o547 Torel fot AT Tcarr 6t AT > (Torei rud 7 A~ earr rud ¢ A)
i=1

6
+ D (TreaiatTearraia) -
=1
In the following, right sides of both (1) and {2) will be analysed. Calcu-
lation will be by matrix calculus and — if it does not cause misunderstanding —
no distinction will be made in notation between vector and column matrix.
Some results of transformation theory will be involved. The facts will
be formulated by means of co-ordinate systems a) and b), thece facts are
however valid for any pair of Cartesian right-handed co-ordinate systems.
Denote the direction cosines matrix of axes of the co-ordinate system b)
in the co-ordinate system a) by Ly,

cos (e;.i) cos(e;.j) cos(e;, k)
Ly, =1cos{e,, i) cos(esj) cos{esk)
cos (e, i) cos(es.j) cos (e k)
Ly, is an orthogonal matrix, thus L' = L.
If the angles ¢, v, 7 are sufficiently small, then approximately

1 =y
Lha =|—Z 1 Tl
L P — 1_
I 1 —Z 1/‘—
Li=Li=| 2 1 —¢
-y ¢ 1l
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An antisymmetric matrix can be derived by means of angular velocity
of the co-ordinate system b) relative to the co-ordinate svstem a), by which
multiplying an arbitrary column vector from the left side or computing the
cross product of the angular velocity and that vector, vields the same result.
This antisymmetric, so-called angular velocity matrix can be expressed in the
co-ordinate system a) (denoted by Q) and in the co-ordinate system b) (denoted
by ), Q and & can be derived by means of L;, as follows

Q= -LiL,, @=L, QL =— L, Lt,. (3)

Q equals & if @, i, % are sufficiently small, and their matrix is

0 —z P
¥ 0 gl (4)
% § 0

Moreover, let vector a correspond to the column matrices a and a in the
co-ordinate systems a) and b), respectively. It is true that

a=1L,a,
and as for (3): Ly = —Ls® and Q% = —Q:
a= ( >‘bxaé)':( Za) é_E"Lzaé == Lgcé*L;aé =~ ZaéTLzaz‘i: Qa+L;nﬁ (5)

5. Calculation of the linear momentum vector, the angular momentum vector
and their derivatives with respeet to time

From Fi

o, 2:
g. 2

x(-) '
I, = Mty = Mylys]| - (6)

Ty

To calculate I ;.. velocity of the point Sy, in the co-ordinate system b)
has to be made use of, that is, obviously g;:¢:

Ire; f6r = Lga irel 6t = —111'6! Llfaé.fc")t =
I =z ¥ 0
= M5 Qs,| » 1 —gll —sin 2.
g g 1Jl — cosz
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Caleulation of Y, ;5 needs the carrier velocity of the point Sy : this
is the vector of the absolute velocity field of the engine case at point Sg,.
Making use of Fig. 2 and (5):

¥y i A ¥ oL LT F A __
Tearr ot = Misi(rs+05; Si0) = My (v5+ K205, 845, L3008, 8) =

X
; 1 * 2 N S — A .
= Mg (t5+ L35, 0 85 S5+ Lita 055 Sis) = Mise )| ¥s| +

o

(3%

5
L o ) (8)
— iy —% Ty Py So
+1 oy tye — AN py—q¢ || — acosxgt-s,cosx|+
-1 470 2P+ — - a sin oy —s, sin «
1 —7 y
= vA 1 —q¢|0f.
—y ¢ 1

é’sa S,;, 1§ zero now, because it is to be calculated by means of the veloc-
ity field of the engine case, so the vector {:so S5, Must be taken to be fixed
to the engine case at the moment.

The further calculation does not cause difficulty according to Fig. 2
and the foregoing. Without going into details:

Lt rua i = Lia Lot rua 1 = My Lipg §'ug 1 =
0
=m,;Lis| 1. f cosp.; (9)
L--rQcos x;-+ 1, f;sin B,
and
Yearr rua i = M (T ag~+Prua i) = m,(r5+05,0+Prua z)=

=m; [1"6 +9(9350_59rud i)+LZa<ésao+érud 1)] =

= my; [1‘.5 +9L;a(§550+§rud 0) —i‘L;a(éASaU_*'é.rud l)] = (10)
x| £ l
= mfl vy | —QLia| — acosmyt-lysin +1;,0.
55 asinoy — rsino; — Iy cos f3; I

@'ss0 and ' 4 ;are zero because —as in (8) — velocity field of the engine
case has to be made use of here, thus both pg,4 and §,4; must be taken to
be fixed to the engine case.
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The linear momentum vector of the i-th piston is:

0
Lot o = Lpa Loy ai = mai Lyg §'q; = my; L, ' 0 ) 8 (11)
— rQ cos«; - 18;sin f;

Yearrai = My (rs+ps,0 +04) = My, [+ 2L, (05,0 +247) + Z:x(é-34;0+§-di)] =

Xy & 1
=mg\ys] — L, a cos %, + L;, 07. (12)
zy asinx, - rsinz; — [ cos f3; J

As the angular momentum vectors are to be expressed by matrix cal-
culus, therefore the antisymmetric matrix is to be introduced:

0 T Ty
Ty 0 —r; (13)
—r, ry 0

which corresponds to the cross product with any arbitrary vector [r, r, r,]
from the left side.

To calculate m;,, the matrix R; has to correspond to the vector r;
according to (13):

Tga = M Ryrs+Li, Jo Ly, s (14)

To calculate Te s5ia, beside Ry, Rsasm and Rs;s,,, corresponding to
~ . - -
Ps,s, ~and 05,5, respectively, have to be introduced. Moreover, there is
need of direction cosines matrix of axes of the co-ordinate svstem ¢) in the

co-ordinate system b):

1 0 0
Lie= |0 cosz—sinx
0 sin=x cos x

. / i A gl .
e et a4 = Mg (Re+Rs;s,.) Lo 816t —+

Q

¢ NN
T ga :b Jfﬁt Lch Lha L;a 0= _
0 (15)

1
kt

= Mis: (Ry—Lsa Rs; s, L) L, 6 550 Lo LYy Jesily

Gt

<o O
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To calculate 7, 5 4 — as in (8) — the carrier velocity (ry; + @s,s,,)"
of Sist is needed, that was already calculated. Making use of this and taking
into consideration the fact that now the carrier angular velocity — expressed

7]
in the co-ordinate system a) —is|p|:
7

— M | : B o * = Mo
Tearrtor 4 = Mgt (Rg+Lg, Rsy s, Lipg)(r o+ S2L5aps; Sese) T

¢l (16)
. &
+ Lba ch Jrﬁt ch Lbn ¥
1
For the i-th connecting rod, the direction cosines matrix of axes of the
co-ordinate system d) in the co-ordinate system b), moreover R ;

Riuq: corresponding to the vectors p.4; and §,,4;. respectively, are to be
introduced:

and

1 0 0
L;=]0 --sin f3; —cos B, |:
0 cosf5; ~—sin j;

= - 5 oz
Trel rud in = My [R6+LDG(R35 o+R'iya ) Lba] Li, 8 rudi T+

g Bi
1 * Ed
+ Lga Lap Jrua i L | O
0
To calculate m_,,. 44 the carrier velocity is needed, known from (10),
of Srudi :

Tarrrudi A= mri[R6+L;a (ﬁ550+ﬁrud i)Lba][f6+gL;a(P~SaO+érud 1)] + (18)
. \

d
* *®
+ Lo Lap Jrua 1 Lap Loe) ¥
4
In calculating angular momentum of the i-th piston, the angular momen-
tum with respect to its own mass-cenire can be neglected. Calculation needs
R,; and R, matrices corresponding to py and gy, respectively.

Trerar 4 = Mg; [ Rg=+Ly, (ﬁsao'll"ﬁdi)l‘ba] Ly, @) (19)
Tiarrgia = My [R6+L;a(ﬁSaO‘IL‘ ﬁd[) Lyl [f5+9L;a(§SaO':”édi)] : (20)

Differentiation of (6)—(20) with respect to time needs not to he specified
here, no difficulties in principle arising in calculation.
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6. Linearized motion equation system

Equation system of the engine motion is:

Imotor = Fmotor - (21)
TCnotora = Mmo;orA s

where F_ .. and M_, . . A are the total external force and the total external
torque with respect to the point A, respectively; they include the gravity and
spring forces R,, R,. R,;. Ignoring all but small amplitude vibrations, and in
accordance with this, linearizing the formulae, the two vectors in the left
sides of the equation system are linear functions of first and second derivatives
of the co-ordinates x;, ¥, %5, ¢» ¥, 7 With respect to time, the vectors on the
right sides are, however, linear functions of the same and the other co-ordi-
nates of the model. Every 3; and g;, occurring in the coefficients, can be expres-
sed by means of the well-known relationships for the crank drive, on the basis

of Fig. 2, in terms of «;:

r§2 sin o;

sinﬁf:—f—cosoc,», B =— :
l / r? R
l ‘ 1 ~I——} cos® %;
0, however, oceurs in coefficients with reference not only to §; and §;.

If the steady state motion is to be examined for practical demands,
then {2 is a periodic function of time and so the coefficients of Eqs (21) are
also complicated periodical functions of time.

The other equations of the linearized equation system of the whole
model contain constant coefficients.

Thus, the linearized equation system of motion of the whele model is
a linear system of differential equations of periodic coefficients in the case
of the steady state motion.

Denoting the column matrix containing all co-ordinates of the whole
model by x, the equation of motion is

A(t)%-+B(t) x+C(t) x = d(t) . (22)

where all of the coefficient matrices are periodic with a common period. In a
given case this period is known; denote it by T. Order of these matrices is n.
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7. Solution of equation (22)

Only the periodic solution of Eq. (22) is of interest. Strictly speaking
its existence ought to be proved earlier. Empirically, however, we are allowed
to assume its existence in this case.

There is no closed solution for Eq. (22) in either the periodic or the general
case. An approximation has to be used. The Galiorkin’s method seems to he
most advantageous.

This method involves a so-called complete system of functions. At the
moment, as periodic solution functions are needed, it should be periodic, with
the period T. So it is the most natural to employ the well-known complete

1 1 1
system of functions consisting of v==: 7= cos kot,~——=sin kot, k= 1,2, ...
27
Here o = T .The first 20 + 1 terms are employed in our approximation.

From the foregoing x is assumed to be:

~

X = fy-+f;, cos wt—+1£,, sin wt-+1,; cos 20t +

4 foo5in 20t 4. . . 4-f, ) cos cwi--£, sin oot
fy. ..., f,, are the wanted column matrices. The unknown elements of them

are altogether (26 <+ 1)n.
Inserting % into (22) and in accordance with the principle of weighted
error let:

f [A(t) X +B(1) 5 +C(t) £ —d()] 1 dt =0,

0

»\‘T [A(t) x +B(t) x +C(t) x —d(t)] cos wtdt = O,

R

T . .
[ [A() x+B(t) x +C(t) x —d(t)] sinowtdt = O .
0
Detailing the above equations, an inhomogeneous linear equation
system arises which consists of just as many equations as needed to deter-
mine the column matrices.

8. Optimization tests

Practice does not content itself with the analysis of models of vehicles,
as was described earlier. From acoustic aspects, the question emerges how to
choose certain parameters of the system so as to optimize the noise field caused
by the motion.
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Equations are too complicated to allow else than numerical tests, namely,
to find solutions for several values of parameters and to compare them. This
optimization relies on equations for the noise field caused by motion of the
vehiele.
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Summary

The chassis and the engine are usually taken as one rigid body in the mathematical
model set up for the examination of vibrations of a vehicle driven by an internal combustion
piston engine. This simplification is appropriate for some examinations. To examine the noise
field inside and outside the passenger cabin this model is not exact enough. Experience proves
that practical solutions are possible by modelling the motion of the driving svstem of the engine
and its elastic suspension. A simple method is presented for the derivation of mechanical
equations of the model.
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